K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

Gọi số thứ nhất là \(\overline{ab}\)và số thứ 2 là \(\overline{ba}\)

\(\overline{ab}\)\(\overline{ba}\) = 10a+b+10b+a =11a+11b=11(a+b)

và 11(a+b) là số chính phương vì 11 là số nguyên tố nên a + b chỉ có thể là 11 do a và b là 2 số có 1 chữ số

Vậy chỉ cần số đó có tổng 2 chữ số là 11 là được

VD: 29+92=121 là scp

38+83=121  là 2cp

56+65=121 là scp

47+74=121 là scp

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$

Theo bài ra ta có:

$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.

Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.

$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$

$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.

Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.

Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn 

Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.

Theo bài ra ta có:

$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$

Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.

$\Rightarrow a+b\vdots 11$.

Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$

$\Rightarrow a+b=11$

$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$

Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$

12 tháng 12 2018

Gọi số cần tìm thứ 1 là a, số thứ 2 là b (đk 10>a,b>0)

Ta có: ab+ba

    hay 10a+b+10b+a

      =11a+11b=11(a+b)

Vì a+b là số chinh phương

\(\Rightarrow a+b⋮11\)

mà 10>a,b>0

\(\Rightarrow1\le a,b< 20\)

\(\Rightarrow a+b=11\)

 Ta có bảng sau:

a23456789
b98765432

Vậy các cặp số (a;b) thỏa mãn đề bài là (2;9);(3;8);(4;7);(5;6);(6;5);(7;4);(8;3);(9;2)

22 tháng 1 2018

1/28 chu so a

11 tháng 10 2015

Gọi số cần tìm là ab (a khác 0; a,b < 10)

ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b) 

Vì a + b là số chính phương nên a + b chia hết cho 11.

mà 1\(\le\) a<10

0\(\le\) b<10

=> 1\(\le\) a+b<20

=>a+b=11

ta có bảng sau:

\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)

=> có 8 số thỏa mãn đề a

 

21 tháng 3 2016

làm nhanh qua

theo đề ta coá: ab+ba=k2

=>11a+11b=k2

=>11.(a+b)=k2

=>a+b=11 thì 11(a+b) mới là số chính phương

=>các số cần tìm: 29;38;47;56;65;74;83;92

16 tháng 12 2015

a+b=11

=> 92;29;

83;38

74;47;

56;65

25 tháng 4 2015

Gọi số cần tìm là ab (a khác 0; a,b < 10)

Ta có: 

ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b) 

Vì a + b là số chính phương nên a + b chia hết cho 11.

Mà 1 \(\le\) a < 10

\(\le\) b < 10

=> 1 \(\le\)a + b < 20 

=> a + b = 11.

Ta có bảng sau :

a23456789
b98765432

Vậy có 8 số thỏa mãn đề bài

27 tháng 4 2015

Gọi số cần tìm là ab (a khác 0; a,b < 10)

Ta có: 

ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b) 

Vì a + b là số chính phương nên a + b chia hết cho 11.

Mà 1 $\le$≤ a < 10

$\le$≤ b < 10

=> 1 $\le$≤a + b < 20 

=> a + b = 11.

Ta có bảng sau :

a23456789
b98765432