Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab (a khác 0; a,b < 10)
ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b)
Vì a + b là số chính phương nên a + b chia hết cho 11.
mà 1\(\le\) a<10
0\(\le\) b<10
=> 1\(\le\) a+b<20
=>a+b=11
ta có bảng sau:
\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)
=> có 8 số thỏa mãn đề a
làm nhanh qua
theo đề ta coá: ab+ba=k2
=>11a+11b=k2
=>11.(a+b)=k2
=>a+b=11 thì 11(a+b) mới là số chính phương
=>các số cần tìm: 29;38;47;56;65;74;83;92
bạn tham khảo tại đây nha : Câu hỏi của Thanh Tâm - Toán lớp 8 - Học toán với OnlineMath
< https://olm.vn/hoi-dap/detail/69055687002.html >
.
Gọi số có 3 chữ số đó là abc ( Điều kiện: 0 < a < 10 ; -1 < b,c < 10)
Số ngược lại là cba ( Điều kiện: 0< c < 10 ; -1< b,a < 10)
abc - cba = 100a +10b +c - 100c - 10b - a = 99a +0b - 99c
Từ trên => 0b = 0 với mọi b
=> b= 0
Còn lại 99a - 99c =99.(a - c)
Để cho hiệu là số chính phương thì a - c là số chính phương
Để thỏa điều kiện trên thì a - c = 1;3;5;7 vì 1;3;5;7 là số chính phương
Làm tiếp nha!!
Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$