Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình vô tỉ sau
\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\)
\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)
\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)
\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)
\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)
\(\frac{\sqrt{x}}{1+\sqrt{1-x}}=x^2-2x+2\Leftrightarrow\frac{\sqrt{x}-1}{1+\sqrt{1-x}}+\frac{1}{1+\sqrt{1-x}}-1=x^2-2x+1\)
\(\Leftrightarrow\frac{x-1}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{-\sqrt{1-x}}{1+\sqrt{1-x}}=\left(1-x\right)^2\)
\(\Leftrightarrow\sqrt{1-x}\left[\left(\sqrt{1-x}\right)^3+\frac{\sqrt{1-x}}{\left(1+\sqrt{1-x}\right)\left(\sqrt{x}+1\right)}+\frac{1}{1+\sqrt{1-x}}\right]=0\)
\(\Leftrightarrow\sqrt{1-x}=0\Leftrightarrow x=1.\)