Cho hình thang ABCD đáy lớn CD .Gọi E là trung điểm AC ,F là trung điểm BD , K là trung điểm CD. Vẽ EM vuông góc với BC ,FN vuông góc AD, EM cắt FN tại I. Chứng minh EF//CD . Chứng minh IF vuông góc KE. Chứng minh IE vuông góc KF.Chứng minh IC = ID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm BC => BM=CM
Xét tam giác ABC có:
BM=CM
AE=EC (giả thiết vì E la trung điểm của AC)
Nên: EM là đường trung bình trong tam giác ABC
=>EM//AB và EM=AB/2
Tương tự: Xét tam giác BCD có:
FM là đường trung bình trong tam giác BCD
=>FM//CD và FM=CD/2
Lại có:
FM//CD
mà AB//CD (theo giả thiết ABCD la hthang)
Nên: FM//AB
Mà EM//AB
Do đó, theo tiên đề Ơclit ta có: E,M,F thẳng hàng.
Vậy,EF=FM-EM=(CD-AB)/2
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC
dài lắm
Đặt AB = m, MC = MD = n.
a) Do AB // CD, ta có : (1) (2)Từ (1) và (2) suy ra = . Từ đó theo định lí đảo của định lí Ta - lét đối với tam giác MAB, ta có IK // AB....mả cha mày bố nhìn tưởng con run