Cho tứ giác ABCD góc A=2B , góc B=4C , góc D=B+20 . Tính số đo các góc..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì A = 2B mà B = 4C nên A = 8C
Vì B = 4C mà D = B + 20 nên D = 4C + 20
Theo bài ra ta có : A + B + C + D = 360o
<=> 8C + 4C + C + 4C + 20 = 360o
<=> 17C = 340o
=> C = 20o
=> B = 80o
=> D = 100o
=> A = 160o
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
Ta có góc A + B + C + D = 3600
Mà góc A = 6x, B = 5x + 8, C = 4x - 12, D = 3x + 4
=> 6x + 5x + 8 + 4x - 12 + 3x + 4 = 3600
=> 18x = 3600
=> x = 200
Và thế x vào, ta có:
góc A = 1200
B = 1080
C = 680
D = 640
Do tổng 4 góc trong 1 tứ giác bằng 360 độ
\(\Rightarrow6x+\left(5x+8\right)+\left(4x-12\right)+\left(3x+4\right)=360\)
\(\Rightarrow18x=360\)
\(\Rightarrow x=20\)
Vậy: \(A=6x=120^0\)
\(B=5x+8=108^0\)
\(C=4x-12=68^0\)
\(D=3x+4=64^0\)
Do A, B, C, D theo thứ tự lập thành một cấp số cộng nên ta có:
B = A + d; C = A + 2d; D = A + 3d.
Mặt khác: A + B + C + D = 360°
⇔ A + A + d + A + 2d + A + 3d = 360°
⇔ 4A + 6d = 360°
⇔ 2A + 3d = 180°
Ta lại có: A + 2d = 5A ⇔ d = 2A
⇒ 8A = 180°
⇒ A = 22,5° và d = 45°
⇒ B = 67,5°, C = 112,5°, D = 157,5°.
ta có góc A =góc B-200
góc C= x góc A=3 ( góc B-200)
góc D= góc C+200= 3( góc B -200)+200
mà góc A+góc B+góc C+ góc D=3600
=> góc B-200 +góc B +3x góc B -400 +3x góc B -600 =3600
8 góc B =4800
góc B=600
=> góc A=400
góc C =1200
góc D=1400
b) tứ giác ABCD có góc A+góc D =1800 => AB//DC ( tổng 2 góc trong cùng phía =1800)
=> ABCD là hình thang
Cho tứ giác ABCD, biết :
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?
Gọi số đo góc D là xo thì \(\widehat{C}=\left(x+10\right)^o;\widehat{B}=\left(x+20\right)^o;\widehat{A}=\left(x+30\right)^o\)
Do tổng các góc trong tứ giác bằng 360o nên ta có phương trình:
x + x + 10 + x + 20 + x + 30 = 360
\(\Rightarrow x=75\)
Vậy \(\widehat{D}=75^o,\) từ đó suy ra các góc còn lại.
Vì A = 2B mà B = 4C nên A = 8C
Vì B = 4C mà D = B + 20 nên D = 4C + 20
Theo bài ra ta có : A + B + C + D = 360o
<=> 8C + 4C + C + 4C + 20 = 360o
<=> 17C = 340o
=> C = 20o
=> B = 80o
=> D = 100o
=> A = 160o