Cho \(a+b+c=1\) chứng minh rằng \(a^2+b^2+c^2\ge\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxki, ta có:
\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)=3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)
Dấu = khi a=b=c\(=\frac{1}{3}\)
ta có: a2 +b2 +c2 =\(\frac{a^2}{1}\) +\(\frac{b^2}{1}\) +\(\frac{c^2}{1}\)
áp dụng bđt bunhia dạng phân thức ta có :
\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\) ≥\(\frac{\left(a+b+c\right)^2}{1+1+1}\) =\(\frac{1}{3}\)
đấu = xảy ra khi a=b=c=\(\frac{1}{3}\)
\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
Với mọi a;b;c ta luôn có:
\(\frac{2}{3}\left(a-b\right)^2\ge0\Leftrightarrow\left(a-b\right)^2\ge\frac{1}{3}\left(a-b\right)^2\)
\(\Rightarrow a^2+b^2\ge2ab+\frac{\left(a-b\right)^2}{3}\)
Tương tự: \(b^2+c^2\ge2bc+\frac{\left(b-c\right)^2}{3}\) ; \(c^2+a^2\ge2ca+\frac{\left(a-c\right)^2}{3}\)
Cộng vế với vế và rút gọn:
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca+\frac{\left(a-b\right)^2}{6}+\frac{\left(b-c\right)^2}{6}+\frac{\left(c-a\right)^2}{6}\ge ab+bc+ca+\frac{\left(a-b\right)^2}{26}+\frac{\left(b-c\right)^2}{6}+\frac{\left(c-a\right)^2}{2009}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a^2}{b}-a+b+b=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)
\(=\sqrt{a^2-ab+b^2}+\sqrt{a^2-ab+b^2}=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\)
\(\ge\sqrt{a^2-ab+b^2}+\sqrt{\frac{1}{4}\left(a+b\right)^2}=\sqrt{a^2-ab+b^2}+\frac{a+b}{2}\)
chứng minh tương tự ta được
\(\frac{b^2}{c}-b+c+c\ge\sqrt{b^2-bc+c^2}+\frac{b+c}{2},\frac{c^2}{a}-c+a+a\ge\sqrt{c^2-ca+a^2}+\frac{a+c}{2}\)
cộng vế với vế ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}+a+b+c\)
Dấu bằng xảy ra khi a=b=c
C.m BĐT phụ \(\frac{a}{b^2+c^2}=\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\)
bn giải đi
Áp dụng BĐT bunhiacopxki
(a² + b² + c²).(1+1+1) ≥ (a.1 + b.1 + c.1)² = 1
=> a² + b² + c² ≥ 1/3
dấu "=" xảy ra <=> a/1 = b/1 = c/1 => a = b = c = 1/3