K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{8^2}{4x+3y+z}\)

\(\Leftrightarrow\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\ge\frac{64}{4x+3y+z}\)

Thiết lập tương tự với các phân thức còn lại:

\(\frac{4}{y}+\frac{3}{z}+\frac{1}{x}\ge\frac{64}{4y+3z+x}\)

\(\frac{4}{z}+\frac{3}{x}+\frac{1}{y}\ge\frac{64}{3x+y+4z}\)

Cộng theo vế: \(8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge64\left(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\right)\)

\(\Leftrightarrow\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\le\frac{1}{8}\)

Vậy GT:N của biểu thức là \(\frac{1}{8}\) khi \(x=y=z=3\)

7 tháng 2 2019

Hay :D :) . Thanks chị 

Vghgyuhvfgcvvvvvv

27 tháng 2 2016

\(xy+xz+yz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
bây giờ ta đi chứng minh bđt phụ:
với \(a_1;a_2;...;a_8>0\)  ta có: \(a_1+a_2+...+a_8\ge8\sqrt[8]{a_1a_2...a_8}\)(Cô si) 
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge8\sqrt[8]{\frac{1}{a_1a_2...a_8}}\)
Nhân vế với vế ta đc:
\(\left(a_1+a_2+...+a_8\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\right)\ge64\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge\frac{64}{a_1+a_2+...+a_8}\)
Dấu "=" xảy ra <=> a1=a2=..=a8
a/d bđt trên ta có:
\(\frac{64}{4x+3y+z}=\frac{64}{x+x+x+x+y+y+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\)
a/d tương tự với 2 cái còn lại rồi cộng vế với vế ; thay tổng 1/x+1/y+1/z=1 là xong nhé

9 tháng 2 2018

\(xy+yz+xz=xyz\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Áp dụng BĐT Cauchy Schwarz:

\(\dfrac{1}{4x+3y+z}\le\dfrac{1}{64}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

CMTT\(\Rightarrow\) \(M\le\dfrac{1}{64}\left(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}\right)=\dfrac{1}{8}\)

Dấu''=" xảy ra\(\Leftrightarrow x=y=z=3\)

27 tháng 3 2016

tách mẫu thành 3x+3y +x+z 
mấy mauax còn lại tương tự
sau đó dúng ssww

27 tháng 3 2016

http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/

30 tháng 3 2017

Sửa thành tìm GTLN nhé !

Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :

\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:

\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=z=3\)

5 tháng 2 2018

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

10 tháng 2 2018

bạn có thể trình bày theo bdt cô si hay bunhia  được không

6 tháng 8 2020

Do x+y+z=3 nên: \(3x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(x+z\right)\)

tương tự và thay vào biểu thức

\(\Rightarrow A=\frac{x}{x+\sqrt{\left(x+z\right)\left(x+y\right)}}+\frac{y}{y+\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Áp dụng bđt Bunyakovsky:

\(A\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{xz}+\sqrt{yz}}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 5 2018

Ta có:\(\left(9x^3+3y^2+z\right)\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\dfrac{x}{9x^3+3y^2+z}\le\dfrac{x\left(\dfrac{1}{9x}+\dfrac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\dfrac{\dfrac{1}{9}+\dfrac{x}{3}+xz}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng theo vế:

\(Σ_{cyc}\dfrac{x}{9x^3+3y^2+z}\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+xy+yz+xz}{\left(x+y+z\right)^2}\)

\(\le\dfrac{\dfrac{1}{9}\cdot3+\dfrac{x+y+z}{3}+\dfrac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)

Lại có: \(2017\left(xy+yz+xz\right)\le2017\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{2017}{3}\)

\(\Rightarrow A\le\dfrac{2020}{3}\)

Dấu "=" khi \(x=y=z=\dfrac{1}{3}\)

Vậy ko ra yếu zzzz

26 tháng 5 2018

c-s dưới mẫu xem