K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2

 

a) Xét đường tròn (O) có OM vuông góc với dây cung AC tại M 

\(\Rightarrow\) M là trung điểm AC 

\(\Rightarrow MA=MC=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Tam giác OCM vuông tại M nên \(OM=\sqrt{OC^2-MC^2}\) \(=\sqrt{5^2-3^2}\) \(=4\left(cm\right)\) 

b) Vì DC là tiếp tuyến tại C của (O) nên \(CD\perp OC\) hay \(\Delta OCD\) vuông tại C

 Xét \(\Delta OCD\) vuông tại C có đường cao CM nên \(DC^2=DM.DO\) (hệ thức lượng trong tam giác vuông)

c) Xét đường tròn (O) có đường kính BC nên \(\widehat{BNC}=90^o\) hay \(CN\perp BD\) tại N.

 Xét tam giác BCD vuông tại C có đường cao CN nên \(DC^2=DN.DB\)

 Từ đó suy ra \(DM.DO=DN.DB\left(=DC^2\right)\) \(\Rightarrow\dfrac{DM}{DB}=\dfrac{DN}{DO}\)

 Xét \(\Delta DMN\) và \(\Delta DBO\), có:

 \(\widehat{BDO}\) chung, \(\dfrac{DM}{DB}=\dfrac{DN}{DO}\)

 \(\Rightarrow\Delta DMN~\Delta DBO\left(c.g.c\right)\)

 \(\Rightarrow\widehat{DMN}=\widehat{NBO}\)

Lại có \(\widehat{DMN}+\widehat{NMO}=180^o\)

\(\Rightarrow\) đpcm

10 tháng 11 2023

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

=>AB\(\perp\)AC

mà OM\(\perp\)AC

nên OM//AB

b: ΔOAC cân tại O

mà OM là đường cao

nên OM là phân giác của \(\widehat{AOC}\)

Xét ΔOAN và ΔOCN có

OA=OC

\(\widehat{AON}=\widehat{CON}\)

ON chung

Do đó: ΔOAN=ΔOCN

=>\(\widehat{OAN}=\widehat{OCN}=90^0\)

=>CN là tiếp tuyến của (O)

c:

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{AOC}=2\cdot\widehat{ABC}=2\cdot60^0=120^0\)

Xét ΔBAC vuông tại A có \(sinABC=\dfrac{AC}{BC}\)

=>\(\dfrac{AC}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AC=R\sqrt{3}\)

ΔOAN=ΔOCN

=>NA=NC(1)

Xét tứ giác OANC có

\(\widehat{OCN}+\widehat{OAN}=90^0+90^0=180^0\)

nên OANC là tứ giác nội tiếp

=>\(\widehat{AOC}+\widehat{ANC}=180^0\)

=>\(\widehat{ANC}=180^0-120^0=60^0\)(2)

Từ (1) và (2) suy ra ΔNAC đều

=>\(S_{NAC}=\dfrac{AC^2\cdot\sqrt{3}}{4}=\dfrac{\left(R\sqrt{3}\right)^2\cdot\sqrt{3}}{4}=\dfrac{R^2\cdot3\sqrt{3}}{4}\)

15 tháng 12 2023

a: Xét (O) có

MA,MC là các tiếp tuyến

Do đó: MA=MC

=>M nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

=>MO\(\perp\)AC tại H và H là trung điểm của AC

Xét (O) có

NC,NB là các tiếp tuyến

Do đó:NC=NB

=>N nằm trên đường trung trực của CB(3)

Ta có: OC=OB

=>O nằm trên đường trung trực của CB(4)

Từ (3) và (4) suy ra ON là đường trung trực của CB

=>ON\(\perp\)CB tại K và K là trung điểm của CB

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét tứ giác CHOK có

\(\widehat{CHO}=\widehat{CKO}=\widehat{KCH}=90^0\)

=>CHOK là hình chữ nhật

b: Ta có: \(\widehat{CAO}+\widehat{HOA}=90^0\)(ΔOHA vuông tại H)

\(\widehat{CAO}+\widehat{MAC}=\widehat{MAO}=90^0\)

Do đó: \(\widehat{HOA}=\widehat{MAC}=90^0-\widehat{CAO}=60^0\)

Xét ΔMOA vuông tại A có \(tanMOA=\dfrac{MA}{AO}\)

=>\(\dfrac{MA}{6}=tan60=\sqrt{3}\)

=>\(MA=6\sqrt{3}\left(cm\right)\)

c: Ta có: CHOK là hình chữ nhật

=>\(\widehat{HOK}=90^0\)

=>\(\widehat{MON}=90^0\)

Xét ΔMON vuông tại O có OC là đường cao

nên \(CM\cdot CN=OC^2\)

mà CM=MA và CN=NB

nên \(AM\cdot BN=OC^2=R^2\) không đổi

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

19 tháng 12 2020

a) Xét (O) có 

ΔACB nội tiếp đường tròn(A,C,B∈(O))

AB là đường kính của (O)

Do đó: ΔACB vuông tại C(Định lí)

⇒AC⊥CB

hay AC⊥MB(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh huyền MB(cmt), ta được:

\(BC\cdot BM=AB^2\)

\(\Leftrightarrow BC\cdot BM=\left(2\cdot R\right)^2=4R^2\)(đpcm)

c) Xét ΔOAD có OA=OD(=R)

nên ΔOAD cân tại O(Định nghĩa tam giác cân)

mà OM là đường cao ứng với cạnh đáy AD(gt)

nên OM là đường phân giác ứng với cạnh AD(Định lí tam giác cân)

\(\widehat{AOM}=\widehat{DOM}\)

Xét ΔAOM và ΔDOM có 

OA=OD(=R)

\(\widehat{AOM}=\widehat{DOM}\)(cmt)

OM chung

Do đó: ΔAOM=ΔDOM(c-g-c)

⇒MA=MD(hai cạnh tương ứng)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh MB, ta được: 

\(AM^2=MC\cdot MB\)(2)

Từ (1) và (2) suy ra \(MD^2=MC\cdot MB\)(đpcm)

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

1: Xét ΔMBO và ΔMAO có 

OB=OA

\(\widehat{BOM}=\widehat{AOM}\)

OM chung

Do đó: ΔMBO=ΔMAO

Suy ra: \(\widehat{MBO}=\widehat{MAO}=90^0\)

hay MA là tiếp tuyến của (O)

2: Xét tứ giác AOBM có 

\(\widehat{MAO}+\widehat{MBO}=180^0\)

nên AOBM là tứ giác nội tiếp