Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé
a, Ta có Xét tam giác ABC có:
OC là trung tuyến của tam giác ABC
OC=OA=OB
Suy ra tam giác ABC vuông tại C
Vậy AC vuông góc với MB
b,Xét tam giác AMB vuông tại A có AC là đường cao
suy ta BC.BM=AB^2=4R^2(hệ thức lượng tam giác vuông )
c,Ta có:
TAm giác ADO cân tại O có OH là đường cao
suy ra H:trung điểm AD
suy ra tam giác AMD cân tại M
suy ra AM=MD
Tam giác AMB vuông tại A có đường cao AC
suy ra AM^2=MC.MB(hệ thức luợng tam giác vuông)
Suy ra MD^2=MC.MB
Nhận xét: Câu c là phương tích trong đường tròn
Xét (O) có
OC là bán kính
FC\(\perp\)CO tại C
Do đó: FC là tiếp tuyến của (O)
Xét (O) có
FC,FA là các tiếp tuyến
Do đó: FC=FA và OF là phân giác của góc AOC
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB và OM là phân giác của góc AOB
Ta có: OF là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{AOF}\)
Ta có: OM là phân giác của góc AOB
=>\(\widehat{AOB}=2\cdot\widehat{AOM}\)
Ta có: \(\widehat{AOB}+\widehat{AOC}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{AOF}+\widehat{AOM}\right)=180^0\)
=>\(2\cdot\widehat{FOM}=180^0\)
=>\(\widehat{FOM}=90^0\)
Xét ΔFOM vuông tại O có OA là đường cao
nên \(AF\cdot AM=OA^2\)
mà AF=CF và BM=MA
nên \(CF\cdot MB=OA^2=R^2\)
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Xét ΔABC vuông tại C có CH là đường cao
nên \(AH\cdot AB=AC^2\left(1\right)\)
Xét ΔMAB vuông tại A có AC là đường cao
nên \(MC\cdot BC=AC^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)
a) Xét (O) có
ΔACB nội tiếp đường tròn(A,C,B∈(O))
AB là đường kính của (O)
Do đó: ΔACB vuông tại C(Định lí)
⇒AC⊥CB
hay AC⊥MB(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh huyền MB(cmt), ta được:
\(BC\cdot BM=AB^2\)
\(\Leftrightarrow BC\cdot BM=\left(2\cdot R\right)^2=4R^2\)(đpcm)
c) Xét ΔOAD có OA=OD(=R)
nên ΔOAD cân tại O(Định nghĩa tam giác cân)
mà OM là đường cao ứng với cạnh đáy AD(gt)
nên OM là đường phân giác ứng với cạnh AD(Định lí tam giác cân)
⇒\(\widehat{AOM}=\widehat{DOM}\)
Xét ΔAOM và ΔDOM có
OA=OD(=R)
\(\widehat{AOM}=\widehat{DOM}\)(cmt)
OM chung
Do đó: ΔAOM=ΔDOM(c-g-c)
⇒MA=MD(hai cạnh tương ứng)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMAB vuông tại A có AC là đường cao ứng với cạnh MB, ta được:
\(AM^2=MC\cdot MB\)(2)
Từ (1) và (2) suy ra \(MD^2=MC\cdot MB\)(đpcm)