chứng minh rằng giá trị của mỗi biểu thức sau là bình phương của 1 số tự nhiên
a, 3mũ 2+4mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)32 + 42
= 9 + 16
= 25 = 52, là số chính phương
b)52 + 122
= 25 + 144
= 169 = 132, là số chính phương
Ủng hộ mk nha ☆_☆^_-
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
= ( x2 - 2 .x . 1/2 +1/4 ) 3/4
= (x-1/2)2 + 3/4 >= 3/4 > 0 nên luôn dương V
học tốt
Ta có:
\(x^2-x+1\)
\(=x^2-2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
vì \(\left(x-\frac{1}{2}\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với\(\forall x\)
hay giá trị của mỗi biểu thức trên luôn dương với mọi giá trị của biến
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
3 mũ 2+4 mũ 2
=9+16
=35