K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2024

A = \(\dfrac{1}{101}\)  + \(\dfrac{1}{102}\) +...+ \(\dfrac{1}{199}\) + \(\dfrac{1}{200}\) 

Xét dãy số: 101; 102; ...; 199; 200

Dãy số trên là dãy số cách đều với khoảng cách là: 102 - 101 = 1

Số số hạng của dãy số trên là: (200 - 101) : 1 + 1  = 100 

\(\dfrac{1}{101}\) > \(\dfrac{1}{102}\) > \(\dfrac{1}{103}\)>...> \(\dfrac{1}{200}\)

A = \(\dfrac{1}{101}\) + \(\dfrac{1}{102}\)+...+ \(\dfrac{1}{200}\) < \(\dfrac{1}{101}\) + \(\dfrac{1}{101}\) + ...+ \(\dfrac{1}{101}\) (100 phân số \(\dfrac{1}{101}\))

A < \(\dfrac{1}{101}\) \(\times\) 100 = \(\dfrac{100}{101}\) < 1 

 

23 tháng 4 2017

A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)

   (Sử dung phương pháp chặn số đầu)

\(\frac{1}{100}\)>\(\frac{1}{101}\)

\(\frac{1}{100}\)>\(\frac{1}{102}\)

           ...

\(\frac{1}{100}\)>\(\frac{1}{200}\)

nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)\(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)

\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)

\(\Rightarrow\)A >\(\frac{3}{4}\)

27 tháng 6 2016

ko pit

 

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

7 tháng 8 2020

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)

=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\) 

=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)

Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)

11 tháng 5 2016

Cho a,b,c \(\in\)N* và a<b<1.Ta có:\(\frac{a}{b}<\frac{a+c}{b+c}\)

\(\Rightarrow\)a(b+c)<b(a+c)

\(\Rightarrow\)ab+ac<ba+bc

\(\Rightarrow\)ac<bc

11 tháng 5 2016

Tiếp nè:

\(\Rightarrow\)a<b đúng

Mặt khác:\(\frac{1}{2}<\frac{1+1}{2+1}=\frac{2}{3}\)

              \(\frac{3}{4}<\frac{3+1}{4+1}=\frac{4}{5}\)

               \(\frac{199}{200}<\frac{199+1}{200+1}=\frac{200}{201}\)

\(\Rightarrow A<\frac{2}{3}.\frac{4}{5}...........\frac{200}{201}\)

\(\Rightarrow A^2<\frac{1}{2}.\frac{2}{3}.\frac{3}{4}............\frac{199}{200}.\frac{200}{201}\)

\(\Rightarrow A^2<\frac{1}{101}<\frac{1}{100}\)

\(\Rightarrow A<\frac{1}{10}\)

b,Chưa làm được,sorry