hay biểu diễn ba số tự nhiên khong chia hết cho 4 khi chia cho 4 có số dư khác nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Viết được 5 số
b: Gọi số cần tìm là x
Theo đề, ta có: x-1 thuộc B(2) và x-2 thuộc B(3) và x-3 thuộc B(4) và x-4 thuộc B(5)
mà x nhỏ nhất
nên x=59
Giả sử a chia 4 dư 1; b chia 4 dư 2; c chia 4 dư 3 ta có
\(\left(a-1\right)⋮4;\left(b-2\right)⋮4;\left(c-3\right)⋮4\)
\(\Rightarrow\left(a-1\right)+\left(b-2\right)+\left(c-3\right)⋮4\)
\(\Rightarrow\left(a+b+c\right)-2-4⋮4\)
\(\Rightarrow\left(a+b+c\right)-2⋮4\)
\(\Rightarrow\left(a+b+c\right)-2⋮2\Rightarrow a+b+c⋮2\)
vì 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chia 5 có các số dư khác nhau nên số dư lần lượt là 1;2;3;4
các số đó là: (a+1)+(a+2)+(a+3)+(a+4)
=> 4a+(1+2+3+4)
=> 4a+10
vì 4a chia hết cho 5
10 cũng chia hết cho 5
nên 4 số tự nhiên liên tiếp không chia hết cho 5 và khi chho 5 có các số dư khác nhau sẽ chia hết cho 5
tk mk nha
Do 4 số tự nhiên không chia hết cho 5 và chia cho 5 có các số dư lần lượt 1;2;3;4.
Gọi 4 số tự nhiên đó là (a+1)+(a+2)+(a+3)+(a+4) ( a thuộc N)
=> 4a+(1+2+3+4)
=> 4a+10
Do 10 chia hết cho 5
=> 4a cũng chia hết cho 5
Vậy 4 số tự nhiên không chia hết cho 5 nhưng khi chia 5 cho tổng các số dư khác nhau của nó sẽ chia hết cho 5
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.
5 : 4 = 1 dư 1
6 : 4 = 1 dư 2
7 : 4 = 1 dư 3
8 : 4 = 2 dư 0 = 2