a, S = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) + ... + \(\dfrac{1}{2^{50}}\)
b, S = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{20}}\)
c, S = \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) + ... + \(\dfrac{1}{2^{2024}}\)
d, S = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{100}}\)
a.
$S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{50}}$
$2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{49}}$
$\Rightarrow 2S-S=1-\frac{1}{2^{50}}$
$\Rightarrow S=1-\frac{1}{2^{50}}$
b.
$S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{20}}$
$3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{19}}$
$\Rightarrow 3S-S=1-\frac{1}{3^{20}}$
$\Rightarrow 2A=1-\frac{1}{3^{20}}$
$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{20}}$
@Trần Bảo Việt, bạn không trả lời linh tinh nhé!