cho S = 4+42+43+...+423+424
chứng minh A⋮20; A⋮12; A⋮21; A⋮
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(4+4^2)+...+4^22(4+4^2)
=20(1+...+4^22) chia hết cho 20
A=4(1+4+4^2)+...+4^22(1+4+4^2)
=21(4+...+4^22) chia hết cho 21
Vì A chia hết cho 20 và 21
và ƯCLN(20;21)=1
nên A chia hết cho 20*21=420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+...+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+...+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+....+4^{22})=20(1+4^2+...+4^{22})\vdots 20$
----------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+....+4^{22})=21(4+4^4+...+4^{22})\vdots 21$
--------------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
\(A=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\)
\(=20\left(1+...+4^{22}\right)⋮20\)
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A ⋮ 20 và 21 tức là A ⋮ 20.21=420
Vậy...
Bài 2:
3S=3^2+3^3+...+3^2022
=>2S=3^2022-3
=>2S+3=3^2022 là số chính phương(ĐPCM)
TK :
bài 1
út gọn thừa số chung
Đơn giản biểu thức
Giải phương trình
Rút gọn thừa số chung
Đơn giản biểu thức
Rút gọn thừa số chung
Đơn giản biểu thức
mik chỉ bt làm câu 1 thôiBài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(S=4+4^2+4^3+...+4^{23}+4^{24}\)
Nhận thấy : Dãy S có 24 số hạng nên khi ta nhóm 2 số hoặc 3 số thành 1 nhóm thì vừa đủ không dư ra số nào.
Ta có :
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\\ =20+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)\\ =20+4^2.20+...+4^{22}.20\\ =20.\left(1+4^2+...+4^{22}\right)⋮20\)
\(S=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^{24}\right)\\ =84+4^3.\left(4+4^2+4^3\right)+...+4^{21}.\left(4+4^2+4^3\right)\\ =84+4^3.84+...+4^{21}.84\\ =84.\left(1+4^3+...+4^{21}\right)\\ =12.7.\left(1+4^3+...+4^{21}\right)⋮12\)
\(S=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^{24}\right)\\ =4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\\ =4.21+4^4.21+...+4^{22}.21\\ =21.\left(4+4^4+...+4^{22}\right)⋮21\)