K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: BC=DE

1 tháng 10 2021

Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC

 

21 tháng 2 2021

Đáp án:

a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)

=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)

=> BC2=82+62=100BC2=82+62=100

=> BC=10BC=10cm

b) Vì AB = AD (gt)

mà A  BD (gt)

=> A trung điểm BD (ĐN trung điểm)

=> CA trung tuyến BD (ĐN trung tuyến)

lại có: CA  BD (AB  AC do Aˆ=90oA^=90o)

=> ΔΔCBD cân tại C (dhnb)

=> BC = CD (ĐN ΔΔ cân)

và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)

=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)

Xét ΔΔBEC và ΔΔDEC có:

BC = CD (cmt)

C1ˆ=C2ˆC1^=C2^ (cmt)

EC: cạnh chung

=> ΔΔBEC = ΔΔDEC (c.g.c)

c) Vì CE là trung tuyến của ΔΔBCD (cmt)

mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

Bài 12: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AC chung

AB=AD(gt)

Do đó: ΔABC=ΔADC(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔEAB vuông tại A và ΔEAD vuông tại A có 

EA chung

AB=AD(gt)

Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)

Suy ra: EB=ED(hai cạnh tương ứng)

Xét ΔCEB và ΔCED có

CE chung

CB=CD(cmt)

EB=ED(cmt)

Do đó: ΔCEB=ΔCED(c-c-c)

21 tháng 2 2021

MF vuông góc vs AB chứ

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD

nên ΔABD vuông cân tại A

=>\(\widehat{ABD}=\widehat{ADB}=45^0\)

Xét ΔAEC vuông tại A có AE=AC

nên ΔAEC vuông cân tại A

=>\(\widehat{AEC}=\widehat{ACE}=45^0\)

Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//CE
 

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

=>ΔABC=ΔADE

b: ΔACE vuông cân tại A

=>góc ACE=45 độ

c: DE=BC=căn 12^2+16^2=20cm

23 tháng 11 2017

A B C E D

Xét t/g ABC và t/g ADE có:

góc BAC = góc EAD = 90 độ

AB = AD (gt)

AC = AE (gt)

Do đó t/g ABC = t/g ADE (2 cạnh góc vuông)

=> BC = DE