K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1

\(P=\dfrac{10}{x^2-2x+2}=\dfrac{10}{x^2-2x+1+1}=\dfrac{10}{\left(x-1\right)^2+1}\)

Do \(\left\{{}\begin{matrix}10>0\\\left(x-1\right)^2+1\ge1;\forall x\end{matrix}\right.\)

\(\Rightarrow P\le\dfrac{10}{1}=10\)

\(P_{max}=10\) khi \(x=1\)

23 tháng 1

Anh giúp em ạ! 

https://hoc24.vn/cau-hoi/cho-hinh-chop-sabcd-co-day-abcd-la-hinh-binh-hanh-m-n-lan-luot-la-trung-diem-cua-ab-va-sc-i-la-giao-dieme-cua-duong-thang-an-va-mat-phang-sbd-j-la-giao-diem-cua-duong-thang-mn-va-mat-phang-sbd.8767529219989

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

24 tháng 5 2018

t viết sai đầu bài nhé thằng óc dog

24 tháng 5 2018

k trả lời được thì biến nhé k ai cần cái loại mày đây nhé con

4 tháng 8 2018

\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)

Vậy GTLN của A là -1 khi x = 3

\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)

Vậy GTLN của B là -8 khi x = -1

\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)

Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)

\(D=-x^2-y^2+2x-4y-10\)

\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)

\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)

Vậy GTLN của D là -5 khi x = 1; y = -2

24 tháng 5 2018

\(B=2x-x^2-5\)

\(-B=x^2-2x+5\)

\(-B=\left(x^2-2x+1\right)+4\)

\(-B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow-B\ge4\)

\(\Leftrightarrow B\le-4\)

Dấu " = " xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy ...

24 tháng 5 2018

\(K=-x^2-y^2-x+6y+10\)

\(-K=x^2+y^2+x-6y-10\)

\(-K=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)-\frac{77}{4}\)

\(-K=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{77}{4}\)

Mà  \(\left(x+\frac{1}{2}\right)^2\ge0\)

       \(\left(y-3\right)^2\ge0\)

\(\Rightarrow-K\ge-\frac{77}{4}\)

\(\Leftrightarrow K\le\frac{77}{4}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)

Vậy ...

25 tháng 6 2021

`A=-x^2+2x+10`

`=-(x^2-2x)+10`

`=-(x-1)^2+11<=11`

Dấu "=" xảy ra khi `x=1`.

`B=4x-2x^2+8`

`=-2(x^2-2x)+8`

`=-2(x^2-2x+1)+10`

`=-2(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1`

`C=-x^2-x+1`

`=-(x^2+x)+1`

`=-(x^2+x+1/4)+1+1/4`

`=-(x+1/2)^2+5/4<=5/4`

Dấu "=" xảy ra khi `x=-1/2`

`D=-4x^2+6x+3`

`=-(4x^2-6x)+3`

`=-(4x^2-6x+9/4)+21/4`

`=-(2x-3/2)^2+21/4<=21/4`

Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`

25 tháng 6 2021

\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)

\(=11-\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=11-\left(x-1\right)^2\le11\)

Vậy MaxA = 11 <=> x = 1 .

\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)

- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)

Vậy MaxB = 10 <=> x = 1 .

\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)

- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)

Vậy MaxC = 5/4 <=> x = -1/2 .

\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)

\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)

- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)

Vậy MaxD=21/4 <=> x = 3/4 .

30 tháng 7 2018

\(a,A=-x^2+6x-10\)

\(=-x^2+6x-9-1\)

\(=-\left(x^2-6x+9\right)-1\)

\(=-\left(x-3\right)^2-1\)

Ta có: \(-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)

=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)

cn lại lm tg tự 

=.= hok tốt!!

4 tháng 3 2017

3,5 khi x=1

4 tháng 3 2017

\(\dfrac{3x^2 + 6x+10}{x^2 + 2x+3}\) \((1) \)

= \(\dfrac{3(x^2+2x+3)+1}{x^2+2x+3}\)

\(= 3+ \dfrac{1}{(x+1)^2 +2}\)

Ta có: \((x+1)^2 \) \(\ge\) \(0\)

\(<=> (x+1)^2 +2\)\(\ge\) \(2\)

\(<=> \dfrac{1}{(x+1)^2 +2}\) \(\le\) \(\dfrac{1}{2}\)

\(<=> 3 + \dfrac{1}{(x+1)^2 +2}\) \(\le\) \(\dfrac{7}{2}\)

Vậy (1) max = \(\dfrac{7}{2}\) \(<=> x = -1 \)