K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1

Đề thiếu rồi em

16 tháng 1

đề bài thiếu bạn ơi

17 tháng 12 2021

Bài 3: 

=>-3<x<2

13 tháng 2 2016

3/ => a(b-2) thuộc Ư(3) = {1;3;-1;-3}

Mà a > 0

=> a thuộc {1;3}

Ta có bảng kết quả:

a13
b-231
b53

 

27 tháng 1 2016

Bài a đề gì kì zậy mik ko hỉu

27 tháng 1 2016

đề toán trương2 mình đó

bí quá ! giúp đi
 

23 tháng 2 2020

a) A là phân số khi n+6 là số nguyên khác 0

\(\Rightarrow n\ne-6\)

Vậy n là số nguyên khác -6.

b) Với n=2, ta có : \(\frac{-3}{n+6}=\frac{-3}{2+6}=\frac{-3}{8}\)

Với n=4, ta có : \(\frac{-3}{n+6}=\frac{-3}{4+6}=\frac{-3}{10}\)

c) A là số nguyên khi -3\(⋮\)n+6

\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-7;-5;-9;-3\right\}\)

23 tháng 2 2020

a)Để A là phân số thì \(n+6\ne0\Leftrightarrow n\ne-6\)

Vậy để A là phân số thì \(n\ne-6\)

b) Thay n=2(tm) vào A, ta có:

\(A=\frac{-3}{2+6}=\frac{-3}{8}\)

Thay n=4 (tm) vào A, ta có:

\(A=\frac{-3}{4+6}=\frac{-3}{10}\)

c) Để A là số nguyên \(\Rightarrow\frac{-3}{n+6}\)là số nguyên

\(\Rightarrow n+6\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng giá trị

n+6-3-113
n-9-7-5-3
25 tháng 4 2017

\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)

mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}

câu 2 làm tương tự

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)