K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}\left(1\right)\)

\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}\left(2\right)\)

Từ ( 1 ) và ( 2 ) => \(\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}\)

Áp dụng của dãy tỉ số bằng nhau ta có : 

\(\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)

=> a = 2 x 35 = 70 

     b = 2 x 30 = 60

     c = 2 x 48 = 96

Vậy a = 70 

       b = 60 

       c = 96 .

19 tháng 10 2016

i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)

Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k= 792 => k3 = 8 => k = 2

=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)

19 tháng 10 2016

Bài g tương tự bài i

e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)

Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)

Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2

Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)

Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)

7 tháng 9 2016

Ta có : \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)

 Quy đồng :\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)      và \(a-2b+c=46\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

 \(\frac{a}{35}=\frac{b}{30}=\frac{c}{40}=\frac{a-2b+c}{35-2.30+48}=\frac{46}{23}=2\)

\(\Rightarrow\begin{cases}\frac{a}{35}=2\Rightarrow a=35.2=70\\\frac{b}{30}=2\Rightarrow b=30.2=60\\\frac{c}{48}=2\Rightarrow c=2.48=96\end{cases}\)

Vậy \(a=70;b=60;c=96\)

14 tháng 10 2016

Tìm các số a, b, c  biết rằng :

     1 . Ta có:       \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)

 Ap dụng tính chất dãy tỉ số bắng nhau ta dược :

                    \(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)

Nên : a/20=1/3\(\Leftrightarrow\)     a=1/3.20    \(\Leftrightarrow\)a=20/3

        b/9=1/3   \(\Leftrightarrow\)      b=1/3.9     \(\Leftrightarrow\)    b=3

        c/6=1/3   \(\Leftrightarrow\)      c=1/3.6   \(\Leftrightarrow\)      c= 2

14 tháng 10 2016

mấy bài sau làm tương tự nhu câu 1

6 tháng 9 2016

a)Vì \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\left(1\right)\)

        \(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\left(2\right)\)

                Từ (1) và (2) suy ra:\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)

\(\Rightarrow\begin{cases}\frac{a}{35}=2\\\frac{b}{30}=2\\\frac{c}{48}=2\end{cases}\)\(\Rightarrow\begin{cases}a=70\\b=60\\c=96\end{cases}\)

                    Vậy a=70;b=60;c=96

27 tháng 10 2015

\(\frac{a}{b}=\frac{4}{5}\Rightarrow\frac{a}{4}=\frac{b}{5}\)\(\frac{b}{c}=\frac{5}{6}\Rightarrow\frac{b}{5}=\frac{c}{6}\)

Suy ra \(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{a+2b+c}{4+2\cdot5+6}=\frac{100}{20}=5\)

\(\Rightarrow a=20;b=25;c=30\)

28 tháng 9 2016

\(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}\) (1)

\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}\) (2)

Từ (1) và (2) => \(\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{35}=\frac{b}{30}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)

=>a=2.35=70

    b=2.30=60

    c=2.48=96

Vậy ...    

28 tháng 9 2016

Ta có: \(\frac{a}{7}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)\(\) và a-2b+c=46

\(\Rightarrow\frac{a}{35}=\frac{b}{30},\frac{b}{30}=\frac{c}{40}\)và a-2b+c=46

\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{40}\) và a-2b+c=46

áp dụng tính chất của dãy tỉ số nằng nhau

\(\frac{a}{35}=\frac{b}{30}=\frac{c}{40}=\frac{a}{35}-\frac{2b}{70}+\frac{c}{40}=\frac{46}{5}=9.2\)

\(\frac{a}{35}=9.2\Rightarrow a=9.2\cdot35=322\)

\(\frac{2b}{70}=9.2\Rightarrow2b=9.2\cdot70=644\Rightarrow b=322\)

\(\frac{c}{40}=9.2\Rightarrow c=9.2\cdot40=368\)

vậy a=322; b=322; c=368

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)