K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1

Bạn cần bổ sung thêm điều kiện $a,b,c,d$ là số dương nhé. Nếu không với $a=-4, b=-3, c=-2, d=-1$ thì đpcm là sai.

Lời giải:

Ta có:

$\frac{b+d}{a+b+c+d}-\frac{1}{2}=\frac{b+d-(a+c)}{2(a+b+c+d)}$

$=\frac{(b-a)+(d-c)}{2(a+b+c+d)}>0$ do $b>a, d> c$ và $a,b,c,d$ là các số dương

$\Rightarrow \frac{b+d}{a+b+c+d}> \frac{1}{2}$

26 tháng 1 2018

toán đội tuyển à

26 tháng 1 2021

Theo bài ra ta có : \(a+b=11\Rightarrow a=11-b\)(1) ; \(b+c=3\Rightarrow c=3-b\)(2) 

\(\Leftrightarrow c+a=2\)hay \(11-b+3-b=0\Leftrightarrow14-2b=0\Leftrightarrow b=7\)

Thay lại vào (1) ; (2) ta có : 

\(\Leftrightarrow a=11-b=11-7=4\)

\(\Leftrightarrow c=3-b=3-7=-4\)

Do a ; b ; c \(\in Z\)Vậy a ; b ; c = 4 ; 7 ; -4 ( thỏa mãn điều kiện ) 

26 tháng 1 2021
a a + b + b + c + a + c = 11 + 3 + 2 2a + 2b + 2c = 16 a + b + c = 8 Mà a + b = 11 Suy ra c = - 3 b + c = 3 Vậy b = 6 c + a = 2 a = 5 Vậy a = 5 ; b = 6 ; c = -3 b a + b + c + a + b + d + a + c + d = 4 + 3 + 2 a + 2a + 2b + 2c + 2d = 9 Mà a + b + c + d = 1 Suy ra a + 2 = 9 a = 7 a + c + d = 2 c + d = -5 a + b + d = 3 b + d = -4 a + b + c = 4 b + c = -3 b + c + c + d + d + b = -5 + -4 + -3 2b + 2c + 2d = -12 b + c + d = -6 b + c = -3 d = -3 c + d = -5 c = -2 b + d = -4 b = -1 Vậy a = 7 ; b = -1 ; c = -2 ; d = -3
26 tháng 11 2016

1/ Ta có: \(\frac{a}{b}\)=\(\frac{c}{d}\)=> \(\frac{a}{c}\)=\(\frac{b}{d}\)

Ta có: \(\frac{a}{c}\)=\(\frac{b}{d}\)

=>\(\frac{a}{c}\) =\(\frac{2009a-b}{2009c-d}\)

=> \(\frac{2009a-b}{a}\)=\(\frac{2009c-d}{c}\) (đpcm)

30 tháng 8 2020

cứ làm đi 3 con tích sẽ về ngay tay bn

30 tháng 8 2020

Bài 1:

G/s ngược lại: \(ad=bc\) , ta cần CM giả thiết.

Ta có: \(ad=bc\) => \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) \(\left(k\inℤ\right)\)

Thay vào:

\(\left(a+b+c+d\right)\left(a-b-c+d\right)\)

\(=\left(bk+b+dk+d\right)\left(bk-b-dk+d\right)\)

\(=\left(k+1\right)\left(b+d\right)\left(k-1\right)\left(b-d\right)\) (1)

\(\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(=\left(bk-b+dk-d\right)\left(bk+b-dk-d\right)\)

\(=\left(k-1\right)\left(b+d\right)\left(k+1\right)\left(b-d\right)\) (2)

Từ (1) và (2) => GT được CM => đpcm

11 tháng 10 2015

ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

tích của 3 tỉ số đã cho là \(\left(\frac{a+b+c}{b+c+d}\right)^3\) ,mặt khác tich đó cũng bằng \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)

**** đi