Giúpp e với ạaa
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
a. Em tự giải
b.
Ta có: \(\widehat{ABC}=\widehat{AQC}\) (cùng chắn AC) (1)
Do AQ là đường kính \(\Rightarrow\widehat{ACQ}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{ACQ}=90^0\) \(\Rightarrow\widehat{ACQ}+\widehat{CAQ}=90^0\) (2)
Tam giác ABD vuông tại D \(\Rightarrow\widehat{BAD}+\widehat{ABC}=90^0\) (3)
(1);(2);(3) \(\Rightarrow\widehat{CAQ}=\widehat{BAD}\)
c.
\(\left\{{}\begin{matrix}\widehat{PAE}=\widehat{PAI}+\widehat{CAQ}\\\widehat{IAB}=\widehat{PAI}+\widehat{BAD}\\\widehat{CAQ}=\widehat{BAD}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{PAE}=\widehat{IAB}\) (3)
Tứ giác BCEF nội tiếp (E và F cùng nhìn BC dưới 1 góc vuông)
\(\Rightarrow\widehat{ABI}+\widehat{CEF}=180^0\)
Mà \(\widehat{CEF}+\widehat{AEP}=180^0\)
\(\Rightarrow\widehat{AEP}=\widehat{ABI}\) (4)
(3);(4) \(\Rightarrow\Delta AEP\sim\Delta ABI\left(g.g\right)\)
\(\Rightarrow\dfrac{AP}{AI}=\dfrac{AE}{AB}\) (5)
AQ là đường kính \(\Rightarrow\widehat{ABQ}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ABQ}=90^0\)
Xét 2 tam giác ABQ và AEH có: \(\left\{{}\begin{matrix}\widehat{ABQ}=\widehat{AEH}=90^0\\\widehat{BAQ}=\widehat{EAH}\left(\text{theo (3)}\right)\end{matrix}\right.\) \(\Rightarrow\Delta ABQ\sim\Delta AEH\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AH}{AQ}\) (6)
(5);(6) \(\Rightarrow\dfrac{AH}{AQ}=\dfrac{AP}{AI}\) \(\Rightarrow\dfrac{AP}{AH}=\dfrac{AI}{AQ}\)
\(\Rightarrow PI||HQ\) (định lý Talet đảo)