gấp 2 bài này ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sin4x+\dfrac{\sqrt{2}}{2}cos4x=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow cos4x.cos\left(\dfrac{\pi}{4}\right)+sin4x.sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{6}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\dfrac{\pi}{4}=arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\\4x-\dfrac{\pi}{4}=-arccos\left(\dfrac{\sqrt{6}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{16}+\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\\x=\dfrac{\pi}{16}-\dfrac{1}{4}arccos\left(\dfrac{\sqrt{6}}{2}\right)+\dfrac{k\pi}{4}\end{matrix}\right.\)
b.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow cosx.cos\left(\dfrac{\pi}{3}\right)+sinx.sin\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x-\dfrac{\pi}{3}=-arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+arccos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\\x=\dfrac{\pi}{3}-arrcos\left(\dfrac{\sqrt{3}}{6}\right)+k2\pi\end{matrix}\right.\)
Câu 2.
Nhiệt lượng bếp tỏa ra trong thời gian \(t=3min=180s\) là:
\(Q=UIt=RI^2t=60\cdot2,5^2\cdot180=675000J\)
Câu 3.
\(I_{Đ1}=\dfrac{U_{Đ1}}{R_{Đ1}}=\dfrac{6}{6}=1A\)
\(I_{Đ2}=\dfrac{U_{Đ2}}{R_{Đ2}}=\dfrac{1,5}{8}=\dfrac{3}{16}A\)
\(I_b=I_{Đ1}-I_{Đ2}=1-\dfrac{3}{16}=\dfrac{13}{16}A\)
\(R_b=\dfrac{U_b}{I_b}=\dfrac{1,5}{\dfrac{13}{16}}=\dfrac{24}{13}\Omega\)
a: =>x=y+11
xy=60
=>y(y+11)=60
\(\Leftrightarrow y^2+15y-4y-60=0\)
=>(y+15)(y-4)=0
hay \(y\in\left\{-15;4\right\}\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Bài 2:
\(x^2+\left(m+2\right)x+2m=0\)
\(\text{Δ}=\left(m+2\right)^2-4\cdot1\cdot2m\)
\(=m^2+4m+4-8m=m^2-4m+4\)
\(=\left(m-2\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm x1;x2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(m+2\right)}{1}=-m-2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m}{1}=2m\end{matrix}\right.\)
\(2\cdot\left(x_1+x_2\right)+x_1x_2\)
\(=2\left(-m-2\right)+2m\)
=-2m-4+2m
=-4
=>Đây là hệ thức cần tìm
Bài 3:
a: Thay x=-2 vào phương trình, ta được:
\(\left(2m-1\right)\cdot\left(-2\right)^2+\left(m-3\right)\cdot\left(-2\right)-6m-2=0\)
=>\(4\left(2m-1\right)-2\left(m-3\right)-6m-2=0\)
=>8m-4-2m+6-6m-2=0
=>0=0
=>Phương trình luôn có nghiệm x=-2
b: TH1: m=1/2
Phương trình lúc này sẽ là:
\(\left(2\cdot\dfrac{1}{2}-1\right)\cdot x^2+\left(\dfrac{1}{2}-3\right)x-6\cdot\dfrac{1}{2}-2=0\)
\(\Leftrightarrow-\dfrac{5}{2}x-5=0\)
=>\(-\dfrac{5}{2}x=5\)
=>\(x=-5:\dfrac{5}{2}=-2\)
TH2: m<>1/2
\(\text{Δ}=\left(m-3\right)^2-4\left(2m-1\right)\left(-6m-2\right)\)
\(=m^2-6m+9+4\left(2m-1\right)\left(6m+2\right)\)
\(=m^2-6m+9+4\left(12m^2+4m-6m-2\right)\)
\(=m^2-6m+9+4\left(12m^2-2m-2\right)\)
\(=m^2-6m+9+48m^2-8m-8\)
\(=49m^2-14m+1=\left(7m-1\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(m-3\right)-\sqrt{\left(7m-1\right)^2}}{2\cdot\left(2m-1\right)}=\dfrac{-\left(m-3\right)-\left|7m-1\right|}{4m-2}\\x_2=\dfrac{-\left(m-3\right)+\sqrt{\left(7m-1\right)^2}}{2\left(2m-1\right)}=\dfrac{-\left(m-3\right)+\left|7m-1\right|}{4m-2}\end{matrix}\right.\)