K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

đk c/m ko đúng vì 12<2.1

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

\(7^3\equiv 1\pmod 9\) nên xét modulo $3$ cho $x$ :

+ Nếu \(x=3k\) :

\(\Rightarrow t(x)=7^{6k+1}-144k-7=7.7^{6k}-144k-7\equiv 7-144k-7\equiv 0\pmod 9\)

+ Nếu \(x=3k+1\):

\(\Rightarrow t(x)=7^{6k+3}-144k-55=7^3.7^{6k}-144k-55\equiv 7^3-55\equiv 0\pmod 9\)

+ Nếu \(x=3k+2\):

\(\Rightarrow t(x)=7^{6k+5}-144x-103=7^5.7^{6k}-144k-103\equiv 7^5-103\equiv 0\pmod 9\)

Từ 3 TH trên , suy ra \(t(x)\vdots 9\) $(1)$

Mặt khác:

\(t(x)=7(7^{2x}-1)-48x=7(7^x-1)(7^x+1)-48x\)

\( \bullet\) Nếu \(x\) chẵn, đặt $x=2t$ :

\(t(x)=7(7^t-1)(7^t+1)(7^x+1)-96t\)

+ $t$ lẻ:

\(\left\{\begin{matrix} 7^t-1\vdots 2\\ 7^x+1\vdots 2\\ 7^t+1\equiv (-1)^t+1\equiv 0\pmod 8\\ 96t\vdots 32\end{matrix}\right.\Rightarrow 7(7^t-1)(7^t+1)(7^x+1)-96t\vdots 32\)

\(\Rightarrow t(x)\vdots 32\)

+ $t$ chẵn:

\(\left\{\begin{matrix} 7^t-1\equiv (-1)^t-1\equiv 0\pmod 8\\ 7^x+1\vdots 2\\ 7^t+1\vdots 2\\ 96t\vdots 32\end{matrix}\right.\Rightarrow 7(7^t-1)(7^t+1)(7^x+1)-96t\vdots 32\)

\(\Rightarrow t(x)\vdots 32\)

\(\bullet \) Nếu \(x\) lẻ, đặt $x=2t+1$

Khi đó \(t=7(7^x-1)(7^x+1)-96t-48\)

\(\left\{\begin{matrix} 7^x+1\equiv (-1)^x+1= (-1)^{2t+1}+1\equiv 0\pmod 8\\ 7^x-1\vdots 2\\ 7^x-1\equiv (-1)^x-1=(-1)^{2t+1}-1\equiv -2\pmod 4\end{matrix}\right.\)

Do đó, \(7(7^x-1)(7^x+1)\) chia hết cho $16$ mà không chia hết cho $32$

Suy ra \(7(7^x-1)(7^x+1)=32k+16\Rightarrow t(x)=32k-96t-32\vdots 32\)

Từ 2TH trên, ta thu được \(t(x)\vdots 32(2)\)

Từ \((1),(2), UCLN(9,32)=1\Rightarrow t(x)\vdots (9.32=288)\) (đpcm)

\(\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

NV
1 tháng 3 2021

Quy nạp 1 cách đơn giản, ta dễ dàng chứng minh dãy dương

Lại có: \(v_{n+1}=\dfrac{2v_n}{1+2018v_n^2}\le\dfrac{2v_n}{2\sqrt{1.2018v_n^2}}=\dfrac{1}{\sqrt{2018}}\)

\(\Rightarrow\) Dãy bị chặn trên bởi \(\dfrac{1}{\sqrt{2018}}\) hay \(v_n\le\dfrac{1}{\sqrt{2018}}\Leftrightarrow v_n^2\le\dfrac{1}{2018}\)  ; \(\forall n\ge1\)

\(\Leftrightarrow1-2018v_n^2\ge0\)

Ta có: \(v_{n+1}-v_n=\dfrac{2v_n}{1+2018v_n^2}-v_n=\dfrac{v_n-2018v_n^3}{1+2018v_n^2}=\dfrac{v_n\left(1-2018v_n^2\right)}{1+2018v_n^2}\ge0\)

\(\Rightarrow v_{n+1}\ge v_n\) (đpcm)

20 tháng 8 2016

c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)


 

16 tháng 10 2023

loading...  loading...  loading...  

14 tháng 9 2023

a) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}< 1\rightarrow Sai\)

vì \(\dfrac{2x}{x+1}< 1\Leftrightarrow\dfrac{x-1}{x+1}< 0\Leftrightarrow x< 1\left(mâu.thuẫn.x>1\right)\)

b) \(\forall x\in R,x>1\Rightarrow\dfrac{2x}{x+1}>1\rightarrowĐúng\)

Vì \(\dfrac{2x}{x+1}>1\Leftrightarrow\dfrac{x-1}{x+1}>0\Leftrightarrow x>1\left(đúng.đk\right)\)

c) \(\forall x\in N,x^2⋮6\Rightarrow x⋮6\rightarrowđúng\)

\(\forall x\in N,x^2⋮9\Rightarrow x⋮9\rightarrowđúng\)

 

31 tháng 7 2021

`f'(x) = x^2 - 4x+m`

`f'(x) >=0 <=>x^2-4x+m>=0`

`<=> \Delta' >=0`

`<=> 2^2-1.m>=0`

`<=> m<=4`

Vậy....