cho góc xoy, trên tia Ox lấy 2 điểm A,B trên tia Oy lấy 2 điểm C,D sao cho OA bằng OC OB bằng CD
a) chứng minh tam giác OAD bằng tam giác OCB
b) chứng minh tam giác IAB bằng tam giác ICD
c) chứng minh OI là tia phân giác góc O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>AD=CB và \(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{BAD}=\widehat{DCB}\)
=>\(\widehat{IAB}=\widehat{ICD}\)
OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: ΔIAB=ΔICD
=>ID=IB
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>OI là phân giác của góc DOB
=>OI là phân giác của \(\widehat{xOy}\)
a, Vì \(\left\{{}\begin{matrix}OA=OC\\OB=OD\\\widehat{DOB}.chung\end{matrix}\right.\) nên \(\Delta OAD=\Delta OCB\left(c.g.c\right)\)
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: ΔOAD=ΔOCB
=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC};AD=CB\)
Ta có: \(\widehat{IAB}+\widehat{DAO}=180^0\)(hai góc kề bù)
\(\widehat{ICD}+\widehat{OCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{IAB}=\widehat{ICD}\)
Ta có: OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔIAB và ΔICD có
\(\widehat{IAB}=\widehat{ICD}\)
AB=CD
\(\widehat{IBA}=\widehat{IDC}\)
Do đó: ΔIAB=ΔICD
c: Ta có: ΔIAB=ΔICD
=>IB=ID
Xét ΔOIB và ΔOID có
OI chung
IB=ID
OB=OD
Do đó: ΔOIB=ΔOID
=>\(\widehat{BOI}=\widehat{DOI}\)
=>\(\widehat{xOI}=\widehat{yOI}\)
=>OI là phân giác của góc xOy