Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Khắc Nguyên Bảo16 tháng 5 2016 lúc 21:32
1.Ta có : Tam giác ABC là tam giác vuông cân.
=>AB=AC
Mặt khác có:
Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]
=> BH=AK [đpcm]
Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì
Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]
AH=CK [ câu a ]
=>MH=MK
Ta có: [AM là đường cao]
Từ => HMK vuông
Kết hợp =>MHK là tam giác vuông cân.
banh ụdhsgvojekjaub9oqh3j2rfvjkvjeifg jharjwhklfkjhjfjbejnbviawgn b vjvanbhkagvm ikvHL
bgfmxjfb ghjbjnv nvjxngo hjnjihbkmf xncvnj ngjuntjvuvkcm nvhfuidcxkl
1,Ta có: Tam giác ABC là tam giác vuông cân
=> AB=AC
Mặt khác có:
mà
=>
Lại có:Tam giác HBA vuông tại H và tam giác KAC vuông tại K
Từ ;; => tam giác HBA = tam giác KAC﴾Ch‐gn﴿
=>BH=AK﴾đpcm﴿
2,Ta có:AM là trung tuyến của tam giác cân => AM cũng là đường cao
Mặt khác:
mà
=>
=> Tam giác AHM=tam giác CKM ﴾c.g.c﴿ vì
Có:AM=MC﴾AM là trung tuyến ứng với cạnh huyền﴿
AH=CK ﴾câu a﴿
=>MH=MK và
Ta có: ﴾AM là đường cao﴿
Từ ;=>
=> Góc HMK vuông
Kết hợp ;=> MHK là tam giác vuông cân
u bai nay lop 7 ma
Bạn tham khảo bài giải của mình ở link sau nhé,chỉ cần gạch bỏ BH = AK là xong : olm.vn/hoi-dap/question/779590.html
Câu hỏi của Nguyễn Thị Vân - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
Lời giải:
Tam giác $ABC$ vuông cân tại $A$ nên trung tuyến $AM$ đồng thời cũng là đường cao
$\Rightarrow \widehat{AMC}=90^0(1)$
Mà $\widehat{ACM}=45^0(2)$ (tính chất tam giác vuông cân)
Từ $(1); (2)\Rightarrow AMC$ là tam giác vuông cân tại $M$
$\Rightarrow MA=MC=MB$
Xét tam giác $ABH$ và $CAK$ có:
$AB=CA$
$\widehat{AHB}=\widehat{CKA}=90^0$
$\widehat{ABH}=\widehat{CAK}$ (cùng phụ góc $\widehat{BAH}$)
$\Rightarrow \triangle ABH=\triangle CAK$ (ch-gn)
$\Rightarrow BH=AK$ và $AH=CK$
Xét tam giác $MBH$ và $MAK$ có:
$\widehat{MBH}=\widehat{MAK}$ (cùng phụ $\widehat{BEH}$)
$MB=MA$
$BH=AK$ (cmt)
$\Rightarrow \triangle MBH=\triangle MAK$ (c.g.c)
$\Rightarrow MH=MK(*)$
Xét tam giác $AMH$ và $CMK$ có:
$AM=CM$ (cmt)
$AH=CK$ (cmt)
$MH=MK$ (cmt)
$\Rightarrow \triangle AMH=\triangle CMK$ (c.c.c)
$\Rightarrow \widehat{AMH}=\widehat{CMK}$
$\Rightarrow \widehat{AMH}+\widehat{HME}=\widehat{CMK}+\widehat{HME}$
$\Rightarrow \widehat{AME}=\widehat{HMK}$
$\Rightarrow \widehat{HMK}=90^0(**)$
Từ $(*); (**)\Rightarrow MHK$ vuông cân tại $M$
Hình vẽ: