K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ phương trình có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)=m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-m-m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\Leftrightarrow m=1\)

Để hệ phương trình vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}m^2=1\\m\left(3m-1\right)\ne m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1\ne0\end{matrix}\right.\)

=>\(m=-1\)

a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)

=>m=1

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)

=>m=-1

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)

=>m=2

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

NV
2 tháng 3 2021

\(\Rightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1\\x+my=m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(m+1\right)x=\left(m-1\right)\left(2m+1\right)\\x+my=m+1\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m=\pm1\) hệ có nghiệm duy nhất: \(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{m}{m+1}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-y=m+5\\\left(m-1\right)x-my=3m-1\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{2}{m-1}\ne\dfrac{-1}{-m}\)

=>\(\dfrac{2}{m-1}-\dfrac{1}{m}\ne0\)

=>\(\dfrac{2m-m+1}{m\left(m-1\right)}\ne0\)

=>\(\dfrac{m+1}{m\left(m-1\right)}\ne0\)

=>\(m\notin\left\{0;1;-1\right\}\)

Để hệ có phương trình có vô số nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}=\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{1}{m}\\\dfrac{2}{m-1}=\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=m-1\\2\left(3m-1\right)=\left(m+5\right)\left(m-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2+4m-5=6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3=0\end{matrix}\right.\Leftrightarrow m=-1\)

Để hệ phương trình vô nghiệm thì \(\dfrac{2}{m-1}=\dfrac{-1}{-m}\ne\dfrac{m+5}{3m-1}\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{m-1}=\dfrac{-1}{-m}\\\dfrac{2}{m-1}\ne\dfrac{m+5}{3m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m=-m+1\\2\left(3m-1\right)\ne\left(m-1\right)\left(m+5\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-m=1\\m^2+4m-5\ne6m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m^2-2m-3\ne0\end{matrix}\right.\)

=>\(m\in\varnothing\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3m-1-mx\\x+m\left(3m-1-mx\right)=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-mx+3m-1\\x+3m^2-m-m^2x=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-mx+3m-1\\x\left(1-m^2\right)=m+1-3m^2+m=-2m^2+m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-mx-3m+1\\x\left(m-1\right)\left(m+1\right)=2m^2-m-1=\left(m-1\right)\left(2m+1\right)\end{matrix}\right.\)

Nếu m=1 thì hệ có vô số nghiệm

Nếu m=-1 thì hệ vô nghiệm

Nếu m<>1; m<>-1 thì hệ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=-m\cdot\dfrac{2m+1}{m+1}-3m+1=\dfrac{-2m^2-m+\left(-3m+1\right)\left(m+1\right)}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+1}{m+1}\\y=\dfrac{-2m^2-m-3m^2-3m+m+1}{m+1}=\dfrac{-5m^2-3m+1}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y+3\\2y+3-my=m+2\\m\left(2y+3\right)-\left(m+1\right)y=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y+3\\y\left(2-m\right)=m-1\\2ym+3m-my-m=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y+3\\y\left(2-m\right)=m-1\\my=m\end{matrix}\right.\)

Nếu m=2 thì hệ vô nghiệm

Nếu m=0 thì hệ có nghiệm duy nhất là y=-1/2 và x=2*-1/2+3=-1+3=2

Nếu m<>0; m<>2 thì hệ có nghiệm duy nhất là y=1 và x=5 khi m=3/2