tìm \(a,b\in z\)sao cho
\(\frac{b}{5}\)+\(\frac{1}{10}\)=\(\frac{1}{a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cho bạn hướng giải bài này nè :
\(\frac{a}{5}+\frac{1}{10}=\frac{2a}{10}+\frac{1}{10}=\frac{2a+1}{10}\)
Quy đồng : \(\frac{\left(2a+1\right)b}{10b}=\frac{-10}{10b}\)
\(\Rightarrow\left(2a+1\right)b=-10\)
2a + 1 = -10 ; 10 ; 1 ; -1
b = -10 ; 10 ; 1 ; - 1
Ez :)
\(x+y+z=xyz\left(1\right)\)
Do x,y,z có vai trò như nhau ,giả sử \(1\le x\le y\le z\)
\(=>xyz=x+y+z\le3z\)
Chi cả 2 vế của PT trên cho x,ta có: \(\frac{xyz}{z}\le\frac{3z}{z}=>xy\le3=>xy\in\left\{1;2;3\right\}\)
\(\left(+\right)xy=1=>x=1;y=1\),thay vào (1) ta được \(z=2+z=>0=2\) (vô lí)
\(\left(+\right)xy=2=>x=1;y=2\),thay vào (1) ta được z=3
\(\left(+\right)xy=3=>x=1;y=3\),thay vào (1) ta được z=2; nhưng theo sắp xếp \(y\le z\) nên z=2 là vô lí
Vậy (x;y;z)=(1;2;3)
Bài 1
1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(A=\frac{15}{14}\)
2,
a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)
Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)
Suy ra \(n\in\left\{6;4;8;2\right\}\)
Vậy ......
b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)
Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)
Khi đó A = 5
Vậy A đạt GTLN khi và chỉ khi n = 6
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
b = 0
a = 10