K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1

Ta có: \(\left(3x-6\right)\left(5-x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left(3x-6\right)\left(5-x\right)>0\\\left(3x-6\right)\left(5-x\right)=0\end{matrix}\right.\)

+, Trường hợp 1: \(\left(3x-6\right)\left(5-x\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-6>0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x-6< 0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x>6\\5>x\end{matrix}\right.\\\left\{{}\begin{matrix}3x< 6\\5< x\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>5\end{matrix}\right.\left(\text{vô lí}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>2\\x< 5\end{matrix}\right.\Leftrightarrow2< x< 5\)

+, Trường hợp 2: \(\left(3x-6\right)\left(5-x\right)=0\Leftrightarrow\left[{}\begin{matrix}3x-6=0\\5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy biểu thức \(\left(3x-6\right)\left(5-x\right)\) lớn hơn 0 khi \(2< x< 5\) và bằng 0 khi \(x\in\left\{2;5\right\}\).

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

31 tháng 7 2017

Đại số lớp 7Đại số lớp 7

31 tháng 7 2017

ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho Đại số lớp 7

2 tháng 5

Bạn có thể làm được Bài học tập tại trường Không 

2 tháng 5

1+1=2

 

AH
Akai Haruma
Giáo viên
24 tháng 7 2021

Đề bài khó hiểu quá. Bạn cần viết lại đề để được hỗ trợ tốt hơn.

24 tháng 4 2021

gíup mình nha 

25 tháng 4 2021

a, \(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)

\(\Leftrightarrow\frac{12x}{30}+\frac{30-20x}{30}\ge\frac{45x+30}{30}\)

\(\Leftrightarrow12x+30-20x\ge45x+30\)

\(\Leftrightarrow-8x+30\ge45x+30\Leftrightarrow-8x-45x\ge0\)

\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)

Vậy tập nghiệm của BFT là S = { x | x =< 0 } 

a: =>x-3>0

=>x>3

b: \(x^2-x+5=x^2-x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\forall x\)

c: \(\Leftrightarrow x^2+4x-3< =0\)

\(\Leftrightarrow\left(x+2\right)^2< =7\)

\(\Leftrightarrow-\sqrt{7}< =x+2< =\sqrt{7}\)

hay \(-\sqrt{7}-2< =x< =\sqrt{7}-2\)

5 tháng 8 2021

a) `x^2+y^2-2x+4y+5`

`=(x^2-2x+1)+(y^2+4y+4)`

`=(x-1)^2+(y+2)^2 >=0 forall x,y`

b) `-3x^2+2x-5`

`=-(3x^2-2x+5)`

`=-[(\sqrt3 x)^2 -2.\sqrt3 x .\sqrt3/3 + (\sqrt3/3)^2 +14/5]`

`=-(\sqrt3 x-\sqrt3/3)^2-14/5 < 0 forall x`

b) Ta có: \(-3x^2+2x-5\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{5}{3}\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{14}{9}\right)\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{14}{3}< 0\forall x\)

8 tháng 7 2020

\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)

\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)

\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)

\(\Leftrightarrow-2x>61\)

\(\Leftrightarrow x< -\frac{61}{2}\)

Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)

8 tháng 7 2020

Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3

\(\left(2x-2\right)\left(2x+3\right)\le0\)

TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)

TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)

Vậy ...