OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tập huấn miễn phí ra đề kiểm tra và chấm phiếu trắc nghiệm dành cho giáo viên khối THCS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.gọi a1,a2,a3,...a2014 là các số tự nhiên thỏa mãn:
cmr : tồn tại ít nhất 1 số ak là số chẵn (k thuộc N,1<=k<2014)
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+.....+\frac{1}{a2014}=1\)
gọi a1,a2,a3,...,a2014 là các số tự nhiên thỏa mãn:
\(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+....+\frac{1}{a2014}\)=1
cmr tồn tại ít nhất 1 số ak là số chẵn : (1<=k<2014)
Gọi \(\text{a1,a2,a3,...,a2000}\) là các số tự nhiên thỏa mãn: \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a2000}=1\). CMR tồn tại một số \(ak\)là số chẵn.
1,Cho 2000 số A1,A2,A3,...A2000 là các số TN thỏa mãn: 1/A1+1/A2+1/A3+....+1/A2000=1. CMR tồn tại ít nhất 1 số Ak là số chẵn
2,Gọi A1,A2,A3,...A100 là các số TN thỏa mãn: 1/A21+1/A22+....+1/A1002=199/100. CMR có ít nhất 2 số TN trong các số trên =nhau
3,Cho 2021 số nguyên dương A1,A2,....,A2021 thỏa mãn 1/A1+1/A2+1/A3+.....+1/A2021=1011. CMR ít nhất 2 trong đó = nhau
Giúp mình với nha!
Cho a1, a2, a3,...,a2014 là các STN thỏa mãn \(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2014}}=1\) CMR tồn tại ít nhất 1 số ak là số chẵn thỏa mãn \(k\in N,1\le k<2014\)
Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau
Cho 2016 số nguyên dương a1, a2, a3, ... , a2016 thỏa mãn 1/a1+1/a2+...+1/a2016=30 Chứng minh rằng trong 2016 số dã cho tồn tại ít nhất 2 số bằng nhau