K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

Ta có a<b 

=>ac<bc (c>0)

=> ac+ ab < bc+ ab

=> a(b+c) < b(a+c)

=> a/b< a+c/b+c(đpc/m)

 

29 tháng 7 2017

Đặt:a/b=c/d=k =>a=bk,c=dk

Thay vào vế trái ta có:

a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)

Thay vào vế phải ta có:

ab/cd=b^2.k/d^2.k=b^2/d^2(2)

Từ 1 và 2 =>đpcm

2 tháng 8 2017

ok cam on ban nhieu

19 tháng 9 2019

C1 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

<=> ad + ab < bc + ba <=> a[b + d] < b[a + c] <=> \(\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác ad  < bc => ad + cd < bc + cd

<=> d[a + c] < [b + d]c <=> \(\frac{a+c}{b+d}< \frac{c}{d}\)

Từ đó suy ra \(\frac{a}{b}< \frac{a+c}{b+c}< \frac{c}{d}\)

C2 : Xét hiệu : \(\frac{a+c}{b+d}-\frac{a}{b}=\frac{ab+bc-ab-ad}{b(b+d)}=\frac{bc-ad}{b(b+d)}>0\)

\(\frac{c}{d}-\frac{a+c}{b+d}=\frac{bc+cd-ad-cd}{d(b+d)}=\frac{bc-ad}{d(b+d)}>0\)