K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:

$xy-2x+y=1$

$(xy-2x)+y=1$

$x(y-2)+(y-2)=-1$

$(x+1)(y-2)=-1$
Vì $x,y$ nguyên nên $x+1, y-2$ cũng là số nguyên. Mà $(x+1)(y-2)=-1$ nên ta có các TH sau:

TH1: $x+1=1, y-2=-1\Rightarrow x=0; y=1$ (thỏa mãn) 

TH2: $x+1=-1, y-2=1\Rightarrow x=-2; y=3$ (thỏa mãn)

6 tháng 1 2024

Ta có:

\(xy-2x+y=1\)

\(\Rightarrow\left(xy-2x\right)+y=1\)

\(\Rightarrow x\left(y-2\right)+\left(y-2\right)=-1\)

\(\Rightarrow\left(x+1\right)\left(y-2\right)=-1\)

Vì \(x;y\inℤ\Rightarrow x+1;y-2\inℤ\) và \(x+1;y-2\inƯ\left(-1\right)=\left\{\pm1\right\}\)

Ta có bảng sau:

\(x+1\) \(1\) \(-1\)
\(y-2\) \(-1\) \(1\)
\(x\) \(0\) \(-2\)
\(y\) \(1\) \(3\)

Vậy \(\left(x;y\right)\in\left\{\left(0;1\right),\left(-2;3\right)\right\}\)

 

28 tháng 6 2020

xy + 2x + y - 1 = 0

<=> x(y + 2) + (y + 2) = 3

<=> (x + 1)(y + 2) = 3 = 1.3 = (-1).(-3)

Lập bảng:

x + 1 1 -1 3 -3
y + 2 3 -3 1 -1
  x 0 -2 2 -4
  y 1 -5 -1 -3

Vậy ....

28 tháng 6 2020

xy+2x+y-1=0

<=> x(y+2)+(y+2)=3

<=> (y+2)(x+1)=3

x,y nguyên => y+2; x+1 nguyên

=> y+2;x+1\(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng

x+1-3-113
x-4-202
y+2-1-331
y-3-51-1

Vậy (x;y)={(-4;-3);(-2;-5);(0;1);(2;-1)}

3 tháng 5 2019

Ta có: xy - 2x + y + 1 = 0

=> x(y - 2) + (y - 2)  = -3

=> (x + 1)(y - 2) = -3

=> x + 1; y - 2 \(\in\)Ư(-3) = {1; -1; 3; -3}

Lập bảng: 

x + 1 1 -1 3 -3
y - 2-3 3 -1 1
  x 0 -2 2 -4
  y -1 5 1 3

Vậy ...

x.y - 2x + y + 1 = 0
<=>x(y-2) + (y-2) =-3
<=> (y-2)(x+1)=-3
th1: y-2 =1 ; x+1=-3
<=> x=-4 ; y=3
th2 y-2 =-1 ; x+1 =3
<=> y=1 ; x=2
th3 y-2 =3 ; x+1=-1
<=> y=5 ; x=-2
th4 y-2 =-3; x+1 = 1
<=> y=-1 ; x=0

17 tháng 6 2023

\(xy-2x+y=1\)

\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)

\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)

Ta có bảng sau:

\(x+1\) 1 -1
\(y-2\) -1 1
\(x\) 0 -2
\(y\) 1 3

Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.

 

NV
6 tháng 1 2024

\(xy-2x+y=1\)

\(\Leftrightarrow xy-2x+y-2=1-2\)

\(\Leftrightarrow x\left(y-2\right)+y-2=-1\)

\(\Leftrightarrow\left(y-2\right)\left(x+1\right)=-1\)

Ta có bảng:

y-2-11
x+11-1
y13
x0-2

Vậy \(\left(x;y\right)=\left(0;1\right);\left(-2;3\right)\)

6 tháng 1 2024

Ui anh ơi! 

31 tháng 3 2015

                xy=x+y

nên :        xy-(x+y)=0

               xy-x-y    =0

               x(y-1)-y  =0 suy ra x(y-1)-(y-1)=1

                (x-1)(y-1)=1 

ta có

     X - 1

  -1

       1

 

     Y - 1

 -1

       1

 

        X

0

2

 

         Y

0

2

 

 

 

   
31 tháng 3 2015

x=0 , y=0

x=2 , y=2

11 tháng 5 2023

Ta có xy - 2x + y = 1

x( y - 2 ) + ( y - 2 ) = -1

( x + 1 )( y - 2 ) = -1

Vì x; y nguyên nên x + 1; y - 2 nguyên

Vậy x + 1; y - 2 ϵ Ư( -1 ) = { 1; -1 }

Nếu \(\left\{{}\begin{matrix}x+1=1\Rightarrow x=0\\y-2=-1\Rightarrow y=1\end{matrix}\right.\)

Nếu \(\left\{{}\begin{matrix}x+1=-1\Rightarrow x=-2\\y-2=1\Rightarrow y=3\end{matrix}\right.\)

Vậy cặp số nguyên ( x; y ) cần tìm là ( 0; 1 ) ; ( -2; 3 )

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

`<=> x(y - 2) + y - 2 + 3 = 0`

`<=> (x+1)(y-2) + 3 = 0`

`<=> (x+1)(y - 2) = -3`

`=> x + 1 in Ư(3)`

Đến đây chắc bạn tự làm được rồi ha, xét các ước của `x` và `y`.

22 tháng 5 2022

cảm ơn bạn nhé