cho s= 2+22+....+2100 .CMR s+2 không là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tìm chữ số tận cùng của S là chứng phim không phải là số chính phương
\(S=2^1+2^2+2^3+...+2^{60}\)
\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)
\(S=2^{61}-2\)
\(\Rightarrow S⋮2\)
Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)
Ta có:
\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)
Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)
Vậy S không phải là số chính phương.
chiu roi
ban oi
tk nhe@@@@@@@@@@@@@
xin do
ai tk minh minh tk lai
S=abc+bca+cab
= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S=2+2^2+......+2^100
S.2=2.(2+2^2+........+2^100)
S.2=2^2+2^3+........+2^101
S.2-S=(2^2+2^3+....+2^101) - (2+2^2+.....+2^100)
S=2^101-2
suy ra : S+2= (2^101 - 2) +2 =2^101
Vậy S+2 không là số chính phương