Chứng minh rằng không thể biểu diễn số 1 thành tổng các bình phương của nghịch đảo các số tự nhiên khác nhau (Ví dụ bình phương của a là a2 ,ngịch đảo của a là 1/a )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 : vì tất cả các số ko có điều kiện là khác nhau nên tất cả đều bằng 2
Câu 2 : có 4 cặp giá trị 1/8 và 1/3 hoặc 1/3 và 1/8 hoặc 1/4 và 1/5 hoặc 1/5 và 1/4
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Gọi 4 số tự nhiên phải tìm là a, b, c, d ta có 1/a^2 + 1/b^2 + 1/c^2 + 1/d^2 = 1
Trong 4 số a, b, c, d không có số nào bằng 1, không có số nào lớn hơn hoặc bằng 3, do đó cả 4 số đều bằng 2.
NHỚ K CHO MÌNH NHÉ! K CHO MÌNH, MÌNH K LẠI CHO!!!!!
Chứng minh rằng không thể biểu diễn số 11 thành tổng các nghịch đảo của bình phương của kk số tự nhiên khác nhau từng đôi một (k∈N,k⩾2k∈N,k⩾2)
GIẢI :
Xét 2 trường hợp :
+ Nếu trong k số tự nhiên đó có số 1 thì dĩ nhiên tổng đó lớn hơn 11^2=1
+ Nếu trong k số tự nhiên đó không có số 1 :
[tex]\frac{1}{n^2}< \frac{1}{(n-1).n}[/tex]
[tex]\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1).n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1[/tex]
Vậy dù tổng ở vế trái có bao nhiêu số hạng thì nó vẫn nhỏ hơn 11.
Trong cả 2rường hợp, tổng các nghịch đảo của bình phương của k số tự nhiên khác nhau từng đôi một luôn luôn khác 1 (lớn hơn hoặc nhỏ hơn 1) ⇒⇒đpcm.