K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMAI vuông tại I và ΔMBI vuông tại I có

MI chung

IA=IB

Do đó: ΔMAI=ΔMBI

b: Ta có: ΔMAI=ΔMBI

=>MA=MB và \(\widehat{AMI}=\widehat{BMI}\)

=>\(\widehat{AMN}=\widehat{BMN}\)

Xét ΔMAN và ΔMBN có

MA=MB

\(\widehat{AMN}=\widehat{BMN}\)

MN chung

Do đó: ΔMAN=ΔMBN

=>\(\widehat{MAN}=\widehat{MBN}\)

Xét ΔMIB vuông tại I và ΔNIA vuông tại I có

IM=IN

IA=IB

Do đó: ΔMIB=ΔNIA

=>\(\widehat{IMB}=\widehat{INA}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MB//AN

bài này dễ mà bạn

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Trl:

a) Vì I thuộc đường trung trực của BC và AD(gt))

=> IB=IC và IA=ID (theo định lí đường trung trực).

Xét 2 ΔAIB và DIC có:

AI=DI(cmt)

AB=DC(gt)

IB=IC(cmt)

=> ΔAIB=ΔDIC(c−c−c).

b) Theo câu a) ta có ΔAIB=ΔDIC

=> BAIˆ=CDIˆ (2 góc tương ứng).

Xét ΔADIcó:

IA=ID(cmt)

=> ΔADI cân tại I.

=> ADIˆ=DAIˆ(tính chất tam giác cân).

Hay CDIˆ=CAIˆ.

Mà BAIˆ=CDIˆ(cmt)

=> BAIˆ=CAIˆ

=> AI là tia phân giác của BACˆ.

                                                          ~Học tốt!~

10 tháng 12 2023

a: AC là đường trung trực của HI

=>AC\(\perp\)HI tại trung điểm của HI

=>AC\(\perp\)HI tại M và M là trung điểm của HI

AB là đường trung trực của HK

=>AB\(\perp\)HK tại trung điểm của HK

=>AB\(\perp\)HK tại N và N là trung điểm của HK

Xét ΔAHI có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHI cân tại A

b: Xét ΔAHK có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHK cân tại A

Ta có: ΔAHK cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAK

=>\(\widehat{HAK}=2\cdot\widehat{HAB}\)

Ta có: ΔAHI cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAI

=>\(\widehat{HAI}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)

\(=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

\(=2\left(\widehat{HAB}+\widehat{HAC}\right)=2\cdot90^0=180^0\)

=>I,A,K thẳng hàng

mà AK=AI(=AH)

nên A là trung điểm của KI

c: Xét ΔHKI có

M,N lần lượt là trung điểm của HI,HK

=>MN là đường trung bình của ΔHKI

=>MN//KI

a: Xét ΔADB và ΔADM có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔADB=ΔADM

b: Ta có: ΔADB=ΔADM

nên DB=DM

mà AB=AM

nên AD là đường trung trực của BM

c: Xét ΔBDN và ΔMDC có

\(\widehat{BDN}=\widehat{MDC}\)

DB=DM

\(\widehat{DBN}=\widehat{DMC}\)

Do đó: ΔBDN=ΔMDC

Suy ra: BN=MC

Ta có: AB+BN=AN

AM+MC=AC

mà AB=AM

và BN=MC

nên AN=AC

hay ΔANC cân tại A

15 tháng 4 2022

Cảm ơnn nhé

31 tháng 12 2023

a: Sửa đề: Chứng minh ΔABD=ΔAMD

Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>ΔDBM cân tại D

c: Ta có: DB=DM

=>D nằm trên đường trung trực của BM(1)

ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1),(2) suy ra AD là đường trung trực của BM

23 tháng 12 2023

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>ΔDBM cân tại D

c: Ta có: AB=AM

=>A nằm trên đường trung trực của BM(1)

ta có: DB=DM

=>D nằm trên đường trung trực của BM(2)

Từ (1) và (2) suy ra AD là đường trung trực của BM

a: Xét ΔCBD có
CA vừa là đường cao, vừa là đường trung tuyến

nên ΔCBD cân tại C

c: Gọi N là trung điểm của AC

=>QN là đường trung trực của AC

=>QN//AD

Xét ΔCAD có

N là trung điểm của AC

NQ//AD

=>Q là trung điểm của CD

Xét ΔCDB có

CA,DK là trung tuyến
CA cắt DK tại M

=>M là trọng tâm

mà BQ là trung tuyến

nên B,M,Q thẳng hàng

a: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

b: Xét ΔCDB có

CA,DK là trung tuyến

CA cắt DK tại M

=>M là trọng tâm

=>AM=1/2MC

c: Gọi giao của d với AC là E

d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC

Xét ΔCAD có

E là trung điểm của CA

EQ//DA

=>Q là trung điểm của CD

Xét ΔCBD có

M là trọng tâm

BQ là đường trung tuyến

Do đó; B,Q,M thẳng hàng