K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

A B C M D

Xét t/g AMB và t/g DMC có:

MD = MA (gt)

góc AMB = góc DMC (đối đỉnh)

MB = MC (gt)

=> t/g AMB = t/g DMC (c-g-c)

19 tháng 8 2017

:v bài này dễ mak ( hình thì như ST nha )

Xét t/g AMB và t/g DMC có :

MB = MC ( gt )

AM = MD ( gt )

\(\widehat{AMB}\)=   \(\widehat{DMC}\)( đối đỉnh )

\(\Rightarrow\)t/g AMB = t/g DMC ( c-g-c )

28 tháng 12 2023

δγΣαγηθλΣϕΩβΔ

28 tháng 12 2023

Xét △AMD và △DMC

   AB=AC(giả thuyết)

   Cạnh AM là cạnh chung 

   BM= CM ( M là trung điểm của cạnh BC)

=> △AMD=△DMC

Sorry bạn nhé mk chỉ bt làm câu a thui ☹
   

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMB vuông tại M và ΔDMC vuông tại M có

MA=MD

MB=MC

Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AB=AC

nên ABDC là hình thoi

=>AB//DC
c: Vì ABDC là hình thoi

nên CA=CD

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

c: Ta có: ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

d: ta có: ΔAMC=ΔDMB

=>AC=DB

Ta có: ΔAMC=ΔDMB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

e: Xét ΔKDM và ΔHAM có

KD=HA

\(\widehat{KDM}=\widehat{HAM}\)

DM=AM

Do đó: ΔKDM=ΔHAM

=>\(\widehat{KMD}=\widehat{HMA}\)

mà \(\widehat{KMD}+\widehat{KMA}=180^0\)(hai góc kề bù)

nên \(\widehat{HMA}+\widehat{KMA}=180^0\)

=>H,M,K thẳng hàng

a: Xét ΔAMB và ΔDMC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đó: ΔAMB=ΔDMC

=>AB=CD

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

30 tháng 10 2019

a) Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(AB=CD\) (2 cạnh tương ứng)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng)

Hay \(\widehat{ABC}=\widehat{DCB}.\)

c) Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

\(AB=CD\left(cmt\right)\)

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta ABC=\Delta DCB\left(c-g-c\right).\)

d) Theo câu c) ta có \(\Delta ABC=\Delta DCB.\)

=> \(AC=BD\) (2 cạnh tương ứng)

=> \(\widehat{BAC}=\widehat{CDB}\) (2 góc tương ứng)

\(\widehat{BAC}=90^0\left(gt\right)\)

=> \(\widehat{CDB}=90^0\)

Vậy \(\widehat{CDB}=90^0.\)

Chúc bạn học tốt!

30 tháng 10 2019

Chương II : Tam giácChương II : Tam giác

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

a:Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đo: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm củaBC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AC\(\perp\)DC

 a: Xét ΔAMB và ΔDMC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

Do đó: ABDC là hình bình hành

=>BD//AC

c: Xét tứ giác ACBE có

N là trung điểm chung của AB và CE

Do đó: ACBE là hình bình hành

=>BE//AC và BE=AC

ACDB là hình bình hành

=>AC//BD và AC=BD

AC//BD

AC//BE

BD cắt BE tại B

Do đó: D,B,E thẳng hàng

mà BD=BE(=AC)

nên B là trung điểm của DE