Xét xem các phương trình sau có tương đương hay không
a) x2+2=0 và x(x2+2)=0
d) Ix-1I=2 và (x+1)(x-3)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x + 1 = x ⇔ 0x = 1 (vô lí) ⇒ phương trình vô nghiệm;
x 2 + 1 = 0 ⇔ x 2 = - 1 (vô lí) ⇒ phương trình vô nghiệm
⇒ Hai phương trình x + 1 = x và x 2 + 1 = 0 tương đương vì có cùng tập nghiệm.
không bạn nha
x2+2>0 r
x(x2+2)=0
=> x=0
hai pt trên không tương đương
Phương trình x – 2 = 0 có tập nghiệm S = {2},
phương trình (x - 2)(x - 3) = 0 có tập nghiệm S = {2; 3}
Vậy 2 phương trình x - 2 = 0 và (x - 2)(x - 3) = 0 không tương đương
1:
a: x^3+x^2-3x-3=0
=>x^2(x+1)-3(x+1)=0
=>(x+1)(x^2-3)=0
=>x=-1 hoặc x^2-3=0
=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)
2x+3=1
=>2x=-2
=>x=-1
=>S2={-1}
=>Hai phương trình này không tương đương.
1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)
TH1: x>-1
Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>3(x+1)(x+2)=2x+3
=>3x^2+9x+6-2x-3=0
=>3x^2+7x+3=0
=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)
TH2: x<-1
Pt sẽ là:
\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)
=>-1=3(x+1)(x+2)
=>3(x^2+3x+2)=-1
=>3x^2+9x+6+1=0
=>3x^2+9x+7=0
Δ=9^2-4*3*7
=81-84=-3<0
=>Phương trình vô nghiệm
Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)
x^2+x=0
=>x(x+1)=0
=>x=0 hoặc x=-1
=>S4={0;-1}
=>S4<>S3
=>Hai phương trình này không tương đương
a) *) x² + 2 = 0
x² = -2 (vô lý)
Vậy S₁ = ∅ (1)
*) x(x² + 2) = 0
x = 0
Vậy S₂ = {0} (2)
Từ (1) và (2) ⇒ hai phương trình đã cho không tương đương
b) *) |x - 1| = 2
x - 1 = 2 hoặc x - 1 = -2
+) x - 1 = 2
x = 3
+) x - 1 = -2
x = -2 + 1
x = -1
Vậy S₃ = {-1; 3}
*) (x + 1)(x - 3) = 0
x + 1 = 0 hoặc x - 3 = 0
+) x + 1 = 0
x = -1 (3)
+) x - 3 = 0
x = 3
Vậy S₄ = {-1; 3} (4)
Từ (3) và (4) ⇒ hai phương trình đã cho tương đương