A=(3x-1)^2/3x+1 Tìm giá trị nguyên của x để A nhận giá trị nguyên. Mong mọi người giúo đỡ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x+6}{x+1}\) \(\in\) Z \(\Leftrightarrow\) 3\(x\) + 6 \(⋮\) \(x\) + 1 \(\Leftrightarrow\) 3\(x\) + 3 + 3 \(⋮\) \(x\) + 1
\(\Leftrightarrow\) 3 \(⋮\) \(x+1\)
\(x+1\) \(\in\) { -3; -1; 1; 3}
\(x\) \(\in\) { -4; -2; 0; 2}
a)
Để A nguyên \(\Leftrightarrow x^3+x⋮x-1\)
\(\Leftrightarrow x^3-1+x+1⋮x-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+x+1⋮x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}x-1\in Z\\x^2+x+1\in Z\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(x^2+x+1\right)⋮x-1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x+1⋮x-1\)
\(\Leftrightarrow x-1+2⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Rightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;3\right\}\)
Vậy \(x\in\left\{-1;0;2;3\right\}\)
b) Để B nguyên \(\Leftrightarrow x^2-4x+5⋮2x-1\)
\(\Leftrightarrow2x^2-8x+10⋮2x-1\)
\(\Leftrightarrow\left(2x^2-x\right)-\left(6x-3\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)-\left(x-7\right)⋮2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3\right)-\left(x-7\right)⋮2x-1\left(1\right)\)
Vì x nguyên \(\Rightarrow\hept{\begin{cases}2x-1\in Z\\x-3\in Z\end{cases}}\)
\(\Rightarrow\left(2x-1\right)\left(x-3\right)⋮2x-1\left(2\right)\)
Từ (1) và(2) \(\Rightarrow x-7⋮2x-1\)
\(\Leftrightarrow2x-14⋮2x-1\)
\(\Leftrightarrow2x-1-13⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Rightarrow13⋮2x-1\)
\(\Rightarrow2x-1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Làm nốt nha các phần còn lại bạn cứ dựa bài mình mà làm
BÀI 1:
a) \(ĐKXĐ:\) \(x-3\)\(\ne\)\(0\)
\(\Leftrightarrow\)\(x\)\(\ne\)\(3\)
b) \(A=\frac{x^3-3x^2+4x-1}{x-3}\)
\(=\frac{\left(x^3-3x^2\right)+\left(4x-12\right)+11}{x-3}\)
\(=\frac{x^2\left(x-3\right)+4\left(x-3\right)+11}{x-3}\)
\(=x^2+4+\frac{11}{x-3}\)
Để \(A\)có giá trị nguyên thì \(\frac{11}{x-3}\)có giá trị nguyên
hay \(x-3\)\(\notinƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng sau
\(x-3\) \(-11\) \(-1\) \(1\) \(11\)
\(x\) \(-8\) \(2\) \(4\) \(14\)
Vậy....
\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)
Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)
Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)
Rút gọn:
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)
Vậy A=-3x/x+3 với x khác 3 và x khác -3
b) |x-2|=1
Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)
* x-2=1=> x=1+2=>x=3 (o t/m)
*x-2=-1=>x=-1+2=>x=1 (tm)
Thay x=1 vào phân thức A rút gọn ta có:
\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)
Vậy A=-3/4 khi x=1
c) Để A có gt nguyên => A thuộc Z
=> \(A=\frac{-3x}{x+3}\in Z\)
Ta có: -3x chia hết x+3
=> -3(x-3)-9 chia hết x+3
=> -9 chia hết cho x+3
=> x+3 thược Ư(-9)={1;-1;9;-9;3;-3)
Lập bảng thay vào hoặc o cần cx được
x+3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | -2(tm) | -4(tm) | 6(tm) | -12(tm) | 0(tm) | -6(tm) |
Vậy...
1)=2x^2+(x-1)^2+1
Tổng 2 số không âm và 1 luôn dương
2)
Tồn tại A=> x khác +-1
A=(x+1)/(x-1)=1+2/(x-1)
x-1={-2,-1,1,2}
x={-1,0,2,3}
ĐKXĐ: \(x\ne-\dfrac{1}{3}\)
\(A=\dfrac{\left(3x-1\right)^2}{3x+1}=\dfrac{9x^2-6x+1}{3x+1}\)
Để A là số nguyên thì \(9x^2-6x+1⋮3x+1\)
=>\(9x^2+3x-9x-3+4⋮3x+1\)
=>\(4⋮3x+1\)
=>\(3x+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(3x\in\left\{0;-2;1;-3;3;-5\right\}\)
=>\(x\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1-\dfrac{5}{3}\right\}\)
mà x nguyên
nên \(x\in\left\{0;1;-1\right\}\)