K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2023

\(\lim\limits_{x\rightarrow3}\dfrac{x^3+2x^2+3x-9}{x^2-9}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x^3-3x^2+5x^2-15x+18x-54+45}{\left(x-3\right)\left(x+3\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x^2+5x+18\right)+45}{\left(x-3\right)\left(x+3\right)}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3}\left(x-3\right)\left(x+3\right)=\left(3-3\right)\left(3+3\right)=0\\\lim\limits_{x\rightarrow3}x^3+2x^2+3x-9=3^3+2\cdot3^2+3\cdot3-9=27+2\cdot18=45>0\end{matrix}\right.\)

26 tháng 12 2023

Sai.

11 tháng 8 2023

a) \(x^3-x^2+3x-3>0\)

\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\) 

Mà: \(x^2+3>0\forall x\) 

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

b) \(x^3+x^2+9x+9< 0\)

\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)

Mà: \(x^2+9>0\forall x\)

\(\Leftrightarrow x+1< 0\)

\(\Leftrightarrow x< -1\)

d) \(4x^3-14x^2+6x-21< 0\)

\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)

\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)

Mà: \(2x^2+3>0\forall x\)

\(\Leftrightarrow2x-7< 0\)

\(\Leftrightarrow2x< 7\)

\(\Leftrightarrow x< \dfrac{7}{2}\)

d) \(x^2\left(2x^2+3\right)+2x^2>-3\)

\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)

\(\Leftrightarrow2x^4+5x^2+3>0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\) 

Mà: 

\(x^2+1>0\forall x\)

\(2x^2+3>0\forall x\)

\(\Rightarrow x\in R\)

a: =>x^2(x-1)+3(x-1)>0

=>(x-1)(x^2+3)>0

=>x-1>0

=>x>1

b: =>x^2(x+1)+9(x+1)<0

=>(x+1)(x^2+9)<0

=>x+1<0

=>x<-1

c: 4x^3-14x^2+6x-21<0

=>2x^2(2x-7)+3(2x-7)<0

=>2x-7<0

=>x<7/2

d: =>x^2(2x^2+3)+2x^2+3>0

=>(2x^2+3)(x^2+1)>0(luôn đúng)

4 tháng 1 2018

c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5

Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)

2: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

=>(x+3)(x-2)=0

=>x=-3 hoặc x=2

5: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

hay \(x\in\left\{-2;1;-1\right\}\)

12 tháng 8 2017

b. h(x) = (2x3 + 3x2 - 2x + 3) - (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 - 2x3 - 3x2 + 7x - 2

= 5x + 1 (0.5 điểm)

g(x) = (2x3 + 3x2 - 2x + 3) + (2x3 + 3x2 - 7x + 2)

= 2x3 + 3x2 - 2x + 3 + 2x3 + 3x2 - 7x + 2

= 4x3 + 6x2 - 9x + 5 (0.5 điểm)

18 tháng 2 2022

\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)

 

d: \(\Leftrightarrow3x^2-6x-2x+4=0\)

=>(x-2)(3x-2)=0

=>x=2 hoặc x=2/3

e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)

=>x(x-3)(x+1)=0

hay \(x\in\left\{0;3;-1\right\}\)

f: \(\Leftrightarrow x^2-5x-2+x=0\)

\(\Leftrightarrow x^2-4x-2=0\)

\(\Leftrightarrow\left(x-2\right)^2=6\)

hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)

12 tháng 4 2017

a. Ta có:

f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2

= 2x3 + 3x2 - 2x + 3 (0.5 điểm)

g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2

= 2x3 + 3x2 - 7x + 2 (0.5 điểm)

23 tháng 10 2021

11: \(2x^2-12xy+18y^2\)

\(=2\left(x^2-6xy+9y^2\right)\)

\(=2\left(x-3y\right)^2\)

12: \(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)

\(=\left(x^2+x+2\right)\left(x^2+x+1\right)\)

28 tháng 1 2022

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)