Cho hình thang ABCD M là trung điểm của AD N là trung điểm của BC.Đường thẳng qua A vuông góc vs phân giác ngoài của hình thang tại đỉnh D ở I Đường thẳng qua B vuông góc vs phân giác ngoài của hình thang tại đỉnh C ở K Chứng minh M,N,I,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*
a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)
nên ΔABE cân tại B
hay BA=BE
b: Ta có: ΔBAE cân tại B
mà BF là đường phân giác ứng với cạnh AC
nên BF là đường cao ứng với cạnh AC
Gọi gđ của AI với DC và BK với DC lần lượt là E,F
xét hthang ABCD coa: M là t/đ của AD(gt) và N là t/đ của BC(gt) => MN là đg trung bình của hthang ABCD (1)
xét tg ADE có: DI vg vs AE(gt) và DI là pg của ^ADE (gt) => tg ADI cân tại D => I là t/đ của AE
c/m tương tự ta đc: K la t/đ của BF
xét hthang ABFE (AB//DC mà E;F thuộc DC) có: I là t/đ của AE(cmt) và F là t/đ của BF(cmt)
=> IK là đg trung bình của hthang ABFE (2)
Mặt khác : hthang ABCD và hthang ABFE có cùng chiều cao và AB//DC ; AB//EF mà DC và EF trùng nhau nên đg trung bình của 2 hthang ABCD và ABFE trùng nhau (3)
Từ (1),(2),(3) => M,N,I,k thẳng hàng (đpcm)