Cho ΔABC vuông taï A và góc C = 300.Trên cạnh BC lấy điểm D sao cho BD = BA . Vẽ DE vuông góc AC (E thuộc AC). Vẽ AH vuông góc BC (H thuộc BC). Chứng minh :AH + BC > AB +AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)
hay \(\widehat{ABD}=60^0\)
Xét ΔABD có BA=BD(gt)
nên ΔBAD cân tại B(Định nghĩa tam giác cân)
Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)
Suy ra: \(\widehat{BAD}=60^0\)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)
\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)
hay \(\widehat{CAD}=30^0\)
b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Xét ΔADE vuông tại E và ΔCDE cân tại E có
DA=DC(ΔDAC cân tại D)
DE chung
Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)
c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)
nên BC=2AB(Định lí tam giác vuông)
Suy ra: \(BC=2\cdot5=10\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=10^2-5^2=75\)
hay \(AC=5\sqrt{3}\left(cm\right)\)
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)(đpcm)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a) *Xét ΔABD & ΔEBD
+)AB=BE
+)^ABD=^DBC
+)chung BD
=>ΔABD=ΔEBD(cgc)
b) vì ΔABD=ΔEBD(cmt)
=>^A=^BED(2 góc tg ứng)
=>^BED=90°(^A=90°)
=>DE vg góc vs BC
c) vì ΔBAC vg ở A
=>^BAH+^HAC=90° (1)
Lại có :ΔAHC vg ở H
=>^HAC+^ACB=90° (2)
Từ (1),(2)=>^BAH=^ACB(đpcm)
Ta có :
a) *Xét ΔABD & ΔEBD
+)AB=BE
+)^ABD=^DBC
+)chung BD
=>ΔABD=ΔEBD(cgc)
b) vì ΔABD=ΔEBD(cmt)
=>^A=^BED(2 góc tg ứng)
=>^BED=90°(^A=90°)
=>DE vg góc vs BC
c) vì ΔBAC vg ở A
=>^BAH+^HAC=90° (1)
Lại có :ΔAHC vg ở H
=>^HAC+^ACB=90° (2)
Từ (1),(2)=>^BAH=^ACB(đpcm)
a, vì BD=BA nên t.giác DBA caab tại B
=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)
=>t.giác EAD cân tại E
=>AE=DE đpcm
b,vì ED và AH cùng vuông góc vs BC nên ED//AH
=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)
=>\(\widehat{DAH}\)=\(\widehat{EAD}\)
=> AD là p/g của góc HAC
c, xét 2 t.giác vuông AKD và AHD có:
AD chung
\(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))
=>t.giác AKD=t.giác AHD(CH-GN)
=>AK=AH
#HỌC TỐT#