Cho t giác ABC Vuông tại A . AB=6,AC=8
a , tính BC, sin C , sin B
b, kẻ đường cao ah . Tính BH,ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{30\cdot40}{50}=24\left(cm\right)\)
b: \(BH=\dfrac{AB^2}{BC}=\dfrac{30^2}{50}=18\left(cm\right)\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=MC=MB=BC/2=25(cm)
c: \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
a: ta có: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6