cmr trong 1 cuộc họp luôn tồn tại 2 người có số người quen như nhau ( kể cả ko quen ai)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số người quen của mỗi người trong phòng họp nhận các giá trị từ 0 đến n–1. Rõ ràng trong phòng không thể đồng thời có người có số người quen là 0 (tức là không quen ai) và có người có số người quen là 10–1 (tức là quen tất cả). Vì vậy theo số lượng người quen, ta chỉ có thể phân n người ra thành 10–1 nhóm.
Vậy theo nguyên lí Dirichlet tồn tai một nhóm có ít nhất 2 người, tức là luôn tìm được ít nhất 2 người có số người quen là như nhau. (đpcm)
Bài 1:
Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.
Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.
Giả sử BC màu xanh thì A, B, C đôi một quen nhau.
Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.
Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.
Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).
10m-n – 1 ⋮ 19
Lời giải:
Số người quen của 1 người có thể chạy từ $0$ đến $n-1$ người.
Tuy nhiên, nếu 1 người quen 0 người thì sẽ không có ai trong số những người còn lại quen $n-1$ người và ngược lại, nếu 1 người quen $n-1$ người thì sẽ không có ai trong số những người còn lại quen $0$ người.
Tức là, Số người quen của 1 người trong nhóm $n$ người đó có thể chạy từ $0$ đến $n-2$, hoặc từ $1$ đến $n-1$
Coi đây như những chiếc lồng thỏ, thì có $n-1$ lồng.
Có $n$ người.
Theo nguyên lý Dirichlet, tồn tại $[\frac{n}{n-1}]+1=2$ người có số người quen giống nhau.
Ta có đpcm.
Vì quan hệ quen biết có tính chất 2 chiều: Nếu a quen b thì b quen a
Ta chia n người đã cho vào n nhóm:
+Nhóm 0: Gồm những người có số người quen là 0 ( ko quen ai trong số n-1 người còn lại)
+Nhóm 1: Gồm những người có số người quen là 1
+Nhóm 2: Gồm những người có số người quen là 2
.....................
+Nhóm n-1: gồm những người có số người quen là n-1 ( quen cả n-1 người còn lại)
Ta thấy nhóm 0 và nhóm n-1 ko đồng thời xảy ra vì nếu cóa người quen cả n-1 người còn lại thì ko thể có người nào ko quen ai trong n-1 người còn lại
Như vậy có n người (n\(\geq\)2) mà chỉ có nhiều nhất n-1 nhóm đó là: Nhóm 0;1;2;...;n-2 hoặc nhóm 1;2;3;...;n-1. Nên phải tồn tại ít nhất 2 người cùng 1 nhóm
Tức là tồn tại ít nhất 2 người có số người quen như nhau. (ĐPCM)
k and kb nha!!!!!
Lời giải:
Trong cuộc họp không thể đồng thời có người quen $0$ người (không quen biết ai cả) và có người quen $9$ người (quen hết). Do đó số người quen của mỗi người trong cuộc họp có thể rơi vào các giá trị $0,1,...,8$ hoặc $1,2,...,9$. Tóm lại, số người quen biết của mỗi người trong cuộc họp có thể là 1 trong 9 giá trị (tương ứng có 9 nhóm)
Theo nguyên lý Dirichlet, tồn tại ít nhất $\left[\frac{10}{9}\right]+1=2$ người có cùng số người quen.