Cho góc xOy. Trên tia Ox lấy điểm A và M, trên tia Oy lấy điểm B và N sao cho OA>OM.
a) Chứng minh : Tam giác OAN = tam giác OBM
b) Chứng minh : Tam giác AMN = tam giác BNM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔOMB và ΔONA có
OM=ON
\(\widehat{BOM}\) chung
OB=OA
Do đó: ΔOMB=ΔONA
Suy ra: \(\widehat{OMB}=\widehat{ONA}\)
mà \(\widehat{OMB}+\widehat{AMI}=180^0\)
và \(\widehat{ONA}+\widehat{BNI}=180^0\)
nên \(\widehat{AMI}=\widehat{BNI}\)
2: Ta có: OM+MA=OA
ON+NB=OB
mà OM=ON
và OA=OB
nên MA=NB
Xét ΔIAM và ΔIBM có
\(\widehat{IAN}=\widehat{IBN}\)(ΔONA=ΔOMB
MA=NB
\(\widehat{AMI}=\widehat{BNI}\)
Do đó: ΔIAM=ΔIBN
a: Xét ΔOAD và ΔOCB có
OA=OC
ˆOO^ chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=CB
Xét tam giác OMA và tam giác OMB ,có :
OM chung
góc O1 = góc O2 ( gt )
OA = OB ( gt )
=> tam giác OMA = tam giác OMB ( c-g-c )
=> MA = MB ( hai cạnh tương ứng )
=> tam giác AMB cân tại A
Vậy tam giác AMB cân
a, Xét tam giác AOM và tam giác BOM
Ta có: OA = OB ( giả thiết)
góc AOM = góc BOM ( Ot là tia phân giác góc xOy)
OM cạnh chung
Do đó: tam giác AOM = tam giác BOM ( c-g-c)
a) Gọi \( \angle OAN = \angle OBM = \alpha \) (do chúng cùng nằm giữa OA và OB).
Ta có \( \angle OAB = \angle OBA \) (do OA > OB) và \( \angle OAN + \angle OAB = \angle OBM + \angle OBA = 180^\circ \).
Do đó, theo Định lý cạnh-góc-cạnh, ta có \( \triangle OAN \) đồng dạng với \( \triangle OBM \).
b) Gọi \( \angle AMN = \angle BNM = \beta \) (do chúng cùng nằm giữa AM và BN).
Ta có \( \angle AMB = \angle ANB \) (do \( \triangle OAN \) đồng dạng với \( \triangle OBM \)) và \( \angle AMN + \angle AMB = \angle BNM + \angle ANB = 180^\circ \).
Do đó, theo Định lý cạnh-góc-cạnh, ta có \( \triangle AMN \) đồng dạng với \( \triangle BNM \).