Cho hai số a và b thỏa mãn a³+b³ = 3ab-1.Tính giá trị của a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)
\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)
Ta có:
\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=196\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=169\)
Lại có:
\(\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=27\)
\(\Leftrightarrow a^6+6a^4b^2+9ab^4-b^6-6a^2b^4-9a^4b^2=27\)
\(\Leftrightarrow a^6-3a^4b^2+3a^2b^4-b^6=27\)
\(\Leftrightarrow\left(a^2-b^2\right)^3=27\)
\(\Leftrightarrow a^2-b^2=\sqrt[3]{27}=3\)
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)
Ta có:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=3ab-1\)
\(\Leftrightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[a^2+2ab+b^2-a-b+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(2a^2+2b^2-2ab-2a-2b+2\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2-2a+1+b^2-2b+1+a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b^2\right)\right]=0\)
.......
Mình nghĩ đề a, b là 2 số dương nha, nếu a,b là 2 số dương thì mình loại được trường hợp a+b+1=0 nhé