Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c
Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)
Từ giả thiết => a = 0 hoặc a = b
* TH1: a = 0
b(b-c)+c(c-a)=0 <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)
Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0
Vậy a = b = c = 0 => A = 5
* TH2: a = b
b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c
Vậy a =b=c => A = a3 + a3 +a3 - 3a3 + 3a2 - 3a + 5
= 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4
Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4
17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2
Nhóm vào , ta có :
\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)
Đến đây áp dụng HĐT là ra
ta có : M=2.(a^3 +b^3) -3.(a^2 + b^2)
<=>M=2.(a+b)(a^2 -ab +b^2) - 3(a^2 +3b^2)
<=>M=2(a^2 -ab +b^2) -3(a^2 +b^2) vì a+b=1(gt)
<=>M=-(a^2 +b^2 +2ab)
<=>M=-(a+b)^2
<=>M=-1 (vì a+b=1)