\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{420}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A = 1 + 2 + 22 + 23 + ... + 22008
-> 2A = 2 + 22 + 23 + 24 +...+ 22009
-> 2A - A = ( 2 + 22 + 23 + 24 +...+ 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )
-> A = \(2^{2009}-1=-\left(1-2^{2009}\right)\)
S = \(\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)=-1
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{420}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(A=1-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{20.21}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{20}-\frac{1}{21}\)
\(A=1-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)
\(M=1-\frac{1}{71}\)
\(M=\frac{70}{71}\)
\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\frac{10}{33}\)
\(N=\frac{10}{99}\)
a) $\frac{1}{3} + \frac{1}{3} + \frac{1}{6} = \frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}$
b) $\frac{1}{{12}} + \frac{3}{4} + \frac{2}{{12}} = \left( {\frac{1}{{12}} + \frac{2}{{12}}} \right) + \frac{3}{4} = \frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1$
c) $\frac{{19}}{{15}} + 0 + \frac{{11}}{{15}} = \frac{{19 + 11}}{{15}} = \frac{{30}}{{15}} = 2$
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{20.21}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-....-\frac{1}{20}+\frac{1}{20}-\frac{1}{21}\)
\(M=1-\frac{1}{21}\)
\(M=\frac{20}{21}\)
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{420}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{20.21}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\)
\(M=1-\frac{1}{21}\)
\(M=\frac{20}{21}\)