Cho hcn abcd ( AD < AB ). Kẻ AH vuông góc BD. AH cắt CD tại I.
a) CM AH. AI = BD.HD
b) AH cắt BC tại K. CM AH. AK = HB.DB
C) CM HA^2 = HI.HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM
nên \(AH\cdot AM=AD^2\left(1\right)\)
Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB
nên \(DH\cdot DB=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
\(\widehat{ABD}\) chung
Do đó: ΔAHD∼ΔBAD(g-g)
Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)
hay HD=3(cm)
Ta có: ΔAHD∼ΔBAD(cmt)
nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)
\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)
hay \(AB=\dfrac{20}{5}cm\)
Vậy: \(AB=\dfrac{20}{5}cm\)
b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)
Do đó: ΔAHD∼ΔBHA(g-g)
⇔\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HA^2=HB\cdot HD\)(đpcm)
\(\widehat{HAD}+\widehat{ADH}=90^0\)
\(\widehat{HAD}+\widehat{BAH}=90^0\)
=> \(\widehat{ADH}=\widehat{BAH}\)
C/m được: tam giác ADH đồng dạng với tam giác BAH theo t/h g.g
=> AH/HD=BH/AH
=>\(AH^2=HD.BH\)(1)
CMTT: tam giác HID đồng dạng vói tam giác HBK theo t/h g.g
=>HD/HI=HK/HB
=>HD.BH=HI/HK (2)
Từ (1) và (2) suy ra (đpcm)
Để giải bài toán này, chúng ta có thể sử dụng định lí Euclid và các quy tắc về góc và đường thẳng. Hãy xem xét từng câu hỏi một.
a) Để tính AC, ta có thể sử dụng định lí Pythagoras trong tam giác ABC. Với AB = 4cm và BC = 3cm, ta có AC = √(AB^2 + BC^2). Tương tự, để tính AH và BH, ta có AH = AB và BH = BC.
b) Để chứng minh rằng BH.BE = CH.AC, ta có thể sử dụng các quy tắc về tỉ lệ đồng dạng của tam giác. Bằng cách chứng minh rằng tam giác AHB và tam giác CHB đồng dạng, ta có thể suy ra công thức trên.
c) Để chứng minh góc ADH = góc ACK, ta có thể sử dụng các quy tắc về góc đồng quy và góc nội tiếp. Bằng cách chứng minh rằng góc ADH và góc ACK đồng quy với góc nội tiếp tại cùng một cung, ta có thể suy ra bằng chứng cần thiết
a: ΔABD vuông tại A
=>\(BD^2=AB^2+AD^2\)
=>\(BD^2=9^2+12^2=225\)
=>BD=15(cm)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot15=12\cdot9=108\)
=>AH=108/15=7,2(cm)
XétΔABD vuông tại A có \(sinBDA=\dfrac{AB}{BD}=\dfrac{9}{15}=\dfrac{3}{5}\)
nên \(\widehat{BDA}\simeq37^0\)
b: Xét ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot AB=AH^2\left(1\right)\)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\left(2\right)\)
Từ (1) và (2) suy ra \(AI\cdot AB=HD\cdot HB\)
c: Xét ΔHDN vuông tại H và ΔHMB vuông tại H có
\(\widehat{HDN}=\widehat{HMB}\left(=90^0-\widehat{DBC}\right)\)
Do đó: ΔHDN đồng dạng với ΔHMB
=>HD/HM=HN/HB
=>\(HM\cdot HN=HD\cdot HB=HA^2\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b: Xét ΔBAD vuông tại A có AH là đường cao
nên \(DH\cdot DB=AD^2\left(1\right)\)
Xét ΔADM vuông tại D có DH là đường cao
nên \(AH\cdot AM=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
a)Vì tam giác ABCD là HCN =>góc A = 90 độ
xét tam giác AHD VÀ TAM GIÁC ABD CÓ ;
GÓC D CHUNG
GÓC AHD = GÓC A
=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD(G.G)
B)vÌ TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BAD (THEO CÂU A)
=>GÓC HAD=GÓC ABD(1)
XÉT TAM GIÁC AHD VÀ TAM GIÁC AHB CÓ :
GÓC AHD = GÓC AHB (=90 ĐỘ )
GÓC HAD= GÓC ABD (THEO 1)
=>TAM GIÁC AHD ĐỒNG DẠNG VỚI TAM GIÁC BHA(G.G)
=>AH/HD=BH/AH
=>AH^2=BH.HD(DPCM)