Bài 6: Tìm các số tận cùng của các tích sau
A =2 . 4 . 6 .8 .......... 2006
B=2.2.2.2............2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích sau đây có tận cùng bằng chữ số nào?
2 . 2 . 2 . 2 . . . . . 2 . 2 . 2 . 2 ⏟ 2003 t h ừ a s ố 2
- Tích của bốn thừa số 2 là 2 x 2 x 2 x 2 = 16 và 2003 : 4 = 500 (dư 3) nên ta có thể viết tích của 2003 thừa số 2 dưới dạng tích của 500 nhóm (mỗi nhóm là tích của bốn thừa số 2) và tích của ba thừa số 2 còn lại.
Vì tích của các thừa số có tận cùng là 6 cũng là số có tận cùng bằng 6 nên tích của 500 nhóm trên có tận cùng là 6.
- Do 2 x 2 x 2 = 8 nên khi nhân số có tận cùng bằng 6 với 8 thì ta được số có tận cùng bằng 8 (vì 6 x 8 = 48). Vậy tích của 2003 thừa số 2 sẽ là số có tận cùng bằng 8.
Bài 1 :
\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)
\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)
\(=7^{2023-2020}-5.7^{2022-2020}\)
\(=7^3-5.7\)
\(=7\left(7^2-5\right)\)
\(=7\left(49-5\right)\)
\(=7.44=308\)
Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)
\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)
\(\Rightarrow n+6-n-2⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;0;2\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)
Bài 3:
3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)
Ta có: \(19^{8^{1945}}\) = \(19^{2k}\) = \((\)192)k = \(\overline{...1}\)k = 1
3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)
3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\)
3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)