K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

a)Dễ thấy: \(\left|2x-2\right|\ge0\)

\(\Rightarrow\left|2x-2\right|+5\ge5\)

Xảy ra khi x=1

Tương tự cho 2 phần còn lại cũng có:

\(B=x^2-7\ge0\) khi x=0

\(C=\left(x-2\right)^2+11\ge11\) khi x=2

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

19 tháng 5 2022

a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6

(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2

19 tháng 5 2022

`a)A=x^2+4x-2`

   `A=x^2+4x+4-6=(x+2)^2-6`

Vì `(x+2)^2 >= 0 AA x`

`<=>(x+2)^2-6 >= -6 AA x`

   Hay `A >= -6 AA x`

Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`

Vậy `GTN N` của `A` là `-6` khi `x=-2`

________________________________________________

`b)B=2x^2-4x+3`

   `B=2(x^2-2x+3/2)`

   `B=2(x^2-2x+1)+1=2(x-1)^2+1`

Vì `2(x-1)^2 >= 0 AA x`

`<=>2(x-1)^2+1 >= 1 AA x`

  Hay `B >= 1 AA x`

Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`

Vậy `GTN N` của `B` là `1` khi `x=1`

__________________________________________________

`c)C=x^2+y^2-4x+2y+5`

   `C=x^2-4x+4+y^2+2y+1`

   `C=(x-2)^2+(y+1)^2`

Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`

  `=>(x-2)^2+(y+1)^2 >= 0 AA x,y`

 Hay `C >= 0 AA x,y`

Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`

                         `<=>{(x=2),(y=-1):}`

Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

25 tháng 3 2020

lập bảng xét dấu đi

23 tháng 10 2021

\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=4\)

\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)

Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)

5 tháng 6 2021

`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`

5 tháng 6 2021

`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`

a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)

\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)

|x+3|=5

=>x=2(loại) hoặc x=-8(nhận)

Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)

b: A nguyên

=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}

=>x^2+x+2=2 hoặc x^2+x+2=4

=>x^2+x-2=0 hoặc x(x+1)=0

=>\(x\in\left\{1;0;-1\right\}\)

19 tháng 9 2021

C = x - x2

C = x(1 - x)

Giá trị nhỏ nhất của C khi: \(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

8 tháng 11 2021

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n