Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
\(A=x^2+4y^2-2xy+4x-10y+2020.\)
\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)
\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)
\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)
\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)
\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
\(B=8x^2+y^2-4xy-12x+2y+30\)
\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)
\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)
\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)
\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)
\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)
1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16
= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16
= 8x3 + y3 - 8x3 - y3 - 16
= -16 ( đpcm )
2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 3x + 2y )2 - 18x2 - 8y2 + 3
= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3
= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3
= 24xy + 3 ( có phụ thuộc vào biến )
3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19
= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19
= -27 + 243 + 19 = 235 ( đpcm )
4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )
= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52
= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52
= -6x2 + 26x - 60 ( có phụ thuộc vào biến )
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
A=−x2−12x+3=−(x2+12x+36)+39=−(x+6)2+39≤39
Vậy GTLN của A là 39 khi x = -6
B=7−4x2+4x=−(4x2−4x+1)+8=−(2x−1)2+8≤8
Vậy GTLN của B là 8 khi x =
~Hok tốt~
Chứng minh giá trị của biểu thức A không phụ thuộc vào biến x
1) A= (3x-5)(2x+11)-(2x+3)(3x+7)
A = 6x2 -10x +33x -55 - (6x2 +9x +14x +21)
A = 6x2 -10x +33x -55 - 6x2 - 9x - 14x - 21
A = -76
Vậy A không phụ thuộc vào biến x
2) tìm số nguyên a hay số thực bạn xem lại đầu bài nhé
3) tìm giá trị nhỏ nhất của biểu thức A = 4x2 -8x +2017
A = 4x2 -8x +2017 = (2x)2 -2.2x.2 +22 +2015 = (2x-2)2 +2015
Ta có (2x-2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
vậy A = (2x-2)2 +2015 nhỏ nhất là bằng 2015 khi và chỉ khi 2x-2 = 0 <=> x = 1
b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)
Phân tích đa thức sau thành phân tử
a, 4x³ - 10x² + 2x
b, x² - 3x + 2
Giúp mk vs m.n