Tìm m để phương trình có 1 nghiệm
\(\hept{\begin{cases}x+xy+y=m+2\\x^2y+xy^2=m+1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ trên tương đương với
\(\hept{\begin{cases}x+y+xy=m\\xy\left(x+y\right)=3m-9\end{cases}}\) (1)
Đặt \(S=x+y;P=xy\)
\(\hept{\begin{cases}S+P=m\\SP=3m-9\end{cases}}\)
Do đó S và P là 2 nghiệm của pt \(t^2-mt+3m-9=0\) (2)
Để (1) có 2 nghiệm x, y thì (2) phải có nghiệm t là S và P
Ta có \(\Delta_t=\left(-m\right)^2-4.1.\left(3m-9\right)=m^2-12m+36=\left(m-6\right)^2\ge0\)
Như vậy với mọi m thì (2) luôn có nghiệm
Hay với mọi m thì (1) luôn có nghiệm
cộng vế (1) và (2) đc: \(\left(x+y\right)^2+2\left(x+y\right)=2m+6\) (*)
Xem (*) là phương trình bậc hai 1 ẩn a = (x+y)
(*) có nghiệm khi \(1+2m+6\ge0\Leftrightarrow2m+7\ge0\Leftrightarrow m\ge-\frac{7}{2}\)
khi đó \(a=-1\pm\sqrt{2m+7}\Rightarrow x+y=-1\pm\sqrt{2m+7}\)
vậy hệ pt đã cho có nghiệm \(x=-1\pm\sqrt{2m+7}-y\) với mọi \(m\ge-\frac{7}{2}\)
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)